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Abstract: Heparanase (HPSE) has been defined as a multitasking protein that exhibits a peculiar
enzymatic activity towards HS chains but which simultaneously performs other non-enzymatic
functions. Through its enzymatic activity, HPSE catalyzes the cutting of the side chains of heparan
sulfate (HS) proteoglycans, thus contributing to the remodeling of the extracellular matrix and of
the basal membranes. Furthermore, thanks to this activity, HPSE also promotes the release and
diffusion of various HS-linked molecules like growth factors, cytokines and enzymes. In addition to
being an enzyme, HPSE has been shown to possess the ability to trigger different signaling pathways
by interacting with transmembrane proteins. In normal tissue and in physiological conditions,
HPSE exhibits only low levels of expression restricted only to keratinocytes, trophoblast, platelets and
mast cells and leukocytes. On the contrary, in pathological conditions, such as in tumor progression
and metastasis, inflammation and fibrosis, it is overexpressed. With this brief review, we intend to
provide an update on the current knowledge about the different role of HPSE protein exerted by its
enzymatic and non-enzymatic activity.
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1. Introduction

Heparanase is an endoglycosidase that cleaves heparan sulphate (HS) chains and whose
activity contributes to degradation and remodeling of extracellular matrix (ECM). This enzyme is
mainly involved in cancer progression [1] but recent studies have added multiple functions to its
repertoire [2]. Several extensive reviews addressing the specific roles of heparanase such as in the case
of inflammation, autophagy, exosome, and fibrosis [3—6] are available. Thus, the aim of the current
review is to give a brief overview summarizing and updating the different aspects of heparanase
biology. Collectively, the data presented here support the role of heparanase in multiple biological
processes and its involvement in several human diseases beyond cancer.

Extracellular Matrix, Heparan Sulfate Proteoglycans and Heparanase

ECM is composed of two main classes of macromolecules: fibrous proteins and polysaccharide
chains belonging to the glycosaminoglycan class (GAG). The fibrous proteins include two groups:
one with mainly structural functions (collagen and elastin), and the other with mainly adhesive
functions (fibronectin, laminins, nidogens and vitronectin). The GAGs are long linear chains of
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polysaccharides formed by disaccharide units of acetylated hexosamines (N-acetyl-galactosamine or
N-acetyl-glucosamine) and uronic acids (D-glucuronic acid or L-iduronic acid). When they bind to
proteins, they give rise to proteoglycans (PGs) which can be rich in sulfate groups with a high negative
charge (chondroitin sulfate, dermatan sulfate, heparansulfate and keratansulfate). The high structural
heterogeneity of PGs is essentially due to the number of attached GAG chains and to the level of
sulfation. The proteoglycans also have a heterogeneous distribution. Keratansulfate proteoglycans,
chondroitinsulfate proteoglycans and dermatansulfate proteoglycans are among the main structural
components of the extracellular matrix (ECM), especially of connective tissues where thanks to the
presence of highly anionic GAGs, they provide hydration and viscosity of the tissues and promote the
diffusion of nutrients, metabolites and growth factors [7].

In particular, heparan sulfate proteoglycans (HSPG) are made up of various types of core proteins
that covalently link variable HS chains. The HS proteoglycans are classified on the basis of the core
protein and include the syndecans and glypicans (membrane-linked), perlecan, agrin and collagen
XVIII (ECM components) and serglycin which is the only intracellular PG. Cell surface HSPG can
activate receptors present on the same cell or on neighboring cells as in the case of fibroblast growth
factor 2 (FGF-2) which bind to syndecanl and whose release contributes to activate FGF-2 receptor-1.
The biological activity of these proteoglycans can be modulated by proteolytic processing that leads to
the shedding of syndecans and glypicans from the cell surface (ectodomain shedding).

There are two main types of HSPGs linked to ECM: agrin which is abundant in most basal
membranes, mainly in the synaptic region and perlecan with a diffuse distribution and a very complex
modular structure. Several pieces of evidence show that HSPG has the function of inhibiting cell
invasion by promoting the interaction between cells and cell-ECM and maintaining the structural
integrity and self-assembly of the ECM [8,9]. Together with shedding, the removal of specific sulfate
groups by endo-sulfatases and the cleavage of HS chains are other post-biosynthetic modifications
of HSPGs. The enzyme that is able to cut HS polysaccharide and release diffusible HS fragments is
called heparanase.

Heparanase (HPSE) is an endo-3-D-glucuronidase which cleaves HS. Human HPSE gene (HPSE-1)
contains 14 exons and 13 introns. It is located on chromosome 4q21.3 and expressed by alternative
splicing as two mRNA, both containing the same open reading frame [10]. Interestingly, the HPSE-2
protein also exists, which shares ~40% similarity with HPSE-1, but does not exert the same activity [11].
HPSE cleaves HS chains on only a limited number of sites. Specifically, it cleaves the (3 (1,4) glycosidic
linkage between GlcA and GIcNS, generating 5-10 kDa HS fragments (10-20 sugar units). Since heparin
shares a high structural similarity with HS, HPSE is also able to cleave this substrate, thus generating
5-20 kDa fragments [12].

2. Heparanase Structure and Activity

2.1. Heparanase Processing and Structure

The active form of HPSE is a 58 kDa dimer made up of 50 kDa and 8 kDa subunits non-covalently
linked. HPSE is synthesized in the endoplasmic reticulum as a precursor of 68 kDa which, in the
Golgi, is then processed in proHPSE (65 kDa) by the elimination of the N-terminal signal peptide.
Pro-HPSE is secreted in the extracellular space where it interacts with several membrane molecules
(low-density lipoprotein-receptor-related protein, mannose 6-phosphate and membrane HSPGs such
as syndecans [13]) for being endocytosed and delivered into lysosomes. In lysosome, cathepsin L
protease catalyzes the excision of a 6 kDa linker region giving rise to the two subunits that form the
mature enzyme. Active HPSE can have many destinations in the cell: it can be secreted, it can be
anchored on the surface of exosomes, it can be included in autophagosomes or it can be shuttled into
the nucleus [2] (Figure 1).

Recently, human HPSE crystal structure has been solved [14]. It is composed of a (3/«) 8 domain
and a B-sandwich domain. A cleft of ~10 A in the (#/«) 8 domain of the apo-enzyme was recognized,
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suggesting that the HS-binding site is contained within this part of the enzyme. Moreover, in this site,
the residues Gluass and Gluypys [14] are present, which have been identified as the catalytic nucleophile
and acid-base of heparanase-cleaving activity [15]. The C-terminal domain of the 50 kDa subunit
regulates protein secretion, enzymatic and non-enzymatic activity of HPSE [14].

2.2. Heparanase Enzymatic Activity

Consistent with its primary localization in late endosomes and perinuclear lysosomes,
the physiological cellular role of active HPSE is to take part in the degradation and turnover of
cell surface HSPGs. However, HPSE localization is not restricted to intracellular vesicles. In response
to proper stimuli, mature HPSE can be secreted after the activation of protein kinase A (PKA) and
kinase C (PKC) [16].

Extracellular active HPSE contributes to HSPG degradation by the cleavage of HS. HPSE-mediated
breakdown of HS affects not only the structure of basal membranes and ECM but also the pool of
HS-bound ligands which are released into the surrounding environment. In turn, the remodeling of
ECM network and the diffusion of cytokines, growth factors and lipoproteins facilitate cell motility,
angiogenesis, inflammation, coagulation and, as shown more recently, the stimulation of autophagy
and exosome production [3-5,17].

2.3. Heparanase Non-Enzymatic Activities

Several studies demonstrate that HPSE also exhibits non-enzymatic activity even if receptors
that could mediate these effects have not yet been identified. The pro-enzyme of 65 kDa induces
signaling cascades that enhance phosphorylation of selected proteins such as Akt, ERK, p38 and Src [18].
For example, endothelial cell migration and invasion are enhanced by proHPSE Akt-phosphorylation
and the activation of PI3K [19]. In addition, latent HPSE also induces glioma, lymphoma and T-cell
adhesion mediated by 1-integrin and correlated with Akt, PyK2 and ERK activation, Akt/PKB
phosphorylation turned out to be mediated by lipid-raft resident components [20].

3. Role of Heparanase in Pathological Conditions

3.1. Heparanase and Cancer Motility, Invasion and Metastasis

Heparanase expression is enhanced in a multiplicity of malignancies: for example, ovarian,
pancreatic, gastric, renal, head and neck, colon, bladder, brain, prostate, breast and liver carcinomas,
Ewing’s sarcoma, multiple myeloma and B-lymphomas [21-24]. The role of HPSE in the development
of cancers has been widely investigated and several recent reviews have covered that area in great
depth [3]. The role of HPSE in cancer is mainly due to its HS degrading activity, facilitating cell
invasion and metastasis dissemination. This hypothesis is also supported by several in vivo studies
where HPSE inhibitors reduced tumor growth [25,26].

3.2. Heparanase and Angiogenesis

HPSE releases a combination of HS-bound growth factors (i.e., bFGF, VEGF, HB-EGF and
KGF) which sustain neovascularization and wound healing. Indeed, it has been proved that HPSE
overexpressing transgenic has an enhanced vascularization [27]. On a vicious loop, the high HPSE
level produced by cancerous cells facilitates angiogenesis, which in turn sustains tumor growth [27].
Neovascularization is also increased by the non-enzymatic action of HPSE that up-regulates VEGF
expression via p38-phosphorylation and Src kinase [28].

3.3. Heparanase and Coagulation

It has been proved that HPSE up-regulates the expression of the blood coagulation initiator-tissue
factor (TF) and directly enhances its activity, which leads to increased factor Xa production and
subsequent activation of the coagulation system. Moreover, HPSE interacts with the tissue factor
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pathway inhibitor (TFPI) on the cell surface of endothelial and tumor cells, leading to dissociation of
TFPI and causing increased cell surface coagulation activity. Consequently, the higher level of thrombin
activates platelets which release additional HPSE [29]. Since many cancer types are associated with
increased TF-associated hypercoagulable states, the high HPSE levels produced by cancer sustaining
this event create a vicious cycle promoting cancer metastasis.

3.4. Heparanase and Inflammation

Inflammation occurs as a response of the body to dangerous stimuli, recruiting leucocytes
from the bloodstream into the injured site. HS has a central role in the inflammatory response
by controlling the release of pro-inflammatory cytokines (IL-2, IL-8, bFGF and TGF-§3), by modulating
the interaction between leucocytes and vascular endothelium, favoring leucocyte recruitment, rolling
process and extravasation [30-32]. As a consequence, HPSE ends up having an essential role in
inflammation. Before cloning the HPSE gene, an HS-degrading activity was discovered in neutrophils
and activated T-lymphocytes and it was involved in their extravasation and accumulation in target
organs [33]. Subsequently, HPSE non-enzymatic activities were reported to facilitate pro-inflammatory
cell adhesion and signal transduction [2]. The main sources of HPSE are endothelial and epithelial
cells in several inflammatory diseases including delayed-type hypersensitivity, chronic colitis, Crohn’s
disease, sepsis-associated lung injury and rheumatoid arthritis [34-36]. In colitis, HPSE from epithelial
cells promotes monocyte-to-macrophage activation and its over-expression is able to prevent the
regression of inflammation, switching macrophage response to chronic inflammation [34]. Moreover,
activated macrophages are able to induce HPSE expression in colonic epithelial cells via tumor
necrosis factor « (TNF«x) stimulation of early growth response 1 factor (Egrl) [34]. The stimulation
of TLRs is among the leading candidate pathways for HPSE-dependent macrophage activation for
two main reasons: (i) intact extracellular HS inhibits TLR4 signaling and macrophage activation
and, so, its removal relieves the inhibition; (ii) soluble HS released upon HPSE activation is able to
stimulate TLR4 [37-39]. Recently, it has been proved that HPSE regulates macrophage polarization and
the crosstalk between macrophages and proximal tubular epithelial cells after ischemia/reperfusion
(I/R) injury [40]. In particular, I/R injury up-regulates HPSE at both tubular and glomerular levels.
HPSE then induces tubular cell apoptosis and Damage Associated Molecular Patterns (DAMPs)
production. DAMPs, HPSE-released HS-fragments and molecules generated from necrotic cells activate
TLRs both on macrophages and tubular cells. Tubular cells in response to direct hypoxic stimuli and
TLR activation produce pro-inflammatory cytokines which attract and activate macrophages and the
presence of high levels of HPSE facilitates M1 polarization of infiltrated macrophages which worsen
parenchymal damage [40].

3.5. Heparanase and Fibrosis

Tissue fibrosis is a deregulated wound-healing process characterized by the progressive
accumulation of ECM together with its reduced remodeling. This event is common in different
parenchymal organs such as the kidney, liver and lungs: HPSE seems involved in all of them with
different mechanisms [41—43]. In the kidney, HPSE is overexpressed in injured tubular epithelial
cells and glomerular cells exposed to several stimuli such as high glucose, advanced glycosylation
end products and albuminuria [44], I/R injury [45,46] and elevated HPSE expression levels have
been demonstrated to regulate epithelial-to-mesenchymal transition (EMT) of tubular cells [41].
Specifically, HPSE is necessary for FGF-2 to activate the PI3K/AKT pathway leading to EMT and for
the establishment of the FGF-2 autocrine loop by the down-regulation of syndecan-1 (SDC1) and the
up-regulation of metalloprotease-9 (MMP9) and HPSE [47]. Moreover, HPSE is deeply involved in
TGEF-B-induced EMT in the kidney since it turned out to be essential for TGF-3 response to pro-fibrotic
stimuli and its lack delayed tubular cell transdifferentiation and impaired TGF-f3 autocrine loop [48].
In the liver, the role of HPSE in fibrosis was sometimes controversial. For example, one study showed
that the level of HPSE inversely correlates with the stage of liver fibrosis, while another one reported
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no difference in HPSE expression between cirrhotic and normal livers [49-52]. Our recent findings in a
mouse model of chronic liver fibrosis suggested the involvement of HPSE in early phases of reaction
to liver damage and inflammatory macrophages as an important source of HPSE. HPSE seems to play
a key role in the macrophage-mediated activation of hepatic stellate cells (HSCs), thus suggesting
that HPSE targeting could be a new therapeutic option in the treatment of liver fibrosis [38]. In the
lungs, it has been reported that DAMPs such as HMGBI released from necrotic/damaged cells lead
to macrophage infiltration-sustaining inflammation. Moreover, HMGB1 is able to activate NF-«B,
which then up-regulates heparanase expression. HPSE then releases TGF-beta form HS-proteoglycans
creating a fibrotic setting [6].

3.6. Heparanase and Autophagy

Since, after secretion, HPSE is up-taken and stored in lysosomes, it has been proved that here
it participates in the autophagy process [3,29]. Specifically, HPSE expression correlates with LC3b
levels in cells and tissue of HPSE knockout and overexpressing mice [29] and it seems that this is
an mTORC1-dependent mechanism [29]. Since autophagy confers an advantage to tumor-cell, by
escaping from cell death, targeting synergistically heparanase and autophagy may be an additional
strategy in cancer treatment (Figure 1).

3.7. Heparanase and Exosome Production

Heparanase also participates in the secretion of exosomes, which are membrane-bound
extracellular vesicles, and is localized to their surface [5]. Specifically, the syndecan-syntenin-ALIX
complex regulates the biogenesis of exosomes [53]. Since this process is regulated by heparan-sulphate,
it has been proved that HPSE modulated the syndecan-syntenin-ALIX pathway resulting in enhanced
endosomal intraluminal budding and biogenesis of exosomes [54]. Subsequently, it has been proved
that exosomes are HPSE carriers, have a membrane localization and retain their ECM-degrading
activity [55,56]. This additional HPSE source can significantly impact ECM degradation and
growth-factor mobilization in neoplastic and inflammatory sets (Figure 1).

3.8. Heparanase Nuclear Activity

Given the nuclear localization of HSPGs, it is not surprising that HPSE can be translocated into
the nucleus. Upon lysosome permeabilization and via interaction with the chaperon heat shock protein
90, active HPSE can translocate in the nucleus where it degrades nuclear HS and regulates gene
expression [57]. Two different modes of gene expression regulation have been described for HPSE
so far: the promotion of HAT activity by the cleavage of nuclear HS and through direct interaction
with DNA [58,59]. HPSE regulates the expression of genes associated with glucose metabolism
and inflammation in endothelial cells [60], differentiation in pro-myeloblast and tumorigenesis in
melanoma cell lines [59]. In addition to mature HPSE, latent proHPSE has also been detected in
the nucleus. Moreover, the observation that exogenously added proHPSE can be translocated in the
nucleus and converted in the mature enzyme has led to the hypothesis that HPSE processing may also
occur in this compartment [61] (Figure 1).
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Figure 1. Schematic model of heparanase trafficking. (1) The inactive pro-HPSE in the extracellular
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spaces interacts with HS-proteoglycans such as syndecan-1 and the complex is endocytosed.
(2) The fusion of endosomes with lysosomes, with the consequent acidification, induces the activation
of HPSE exerted by the cleavage by cathepsin-L. (3) Here HPSE participates in the formation of
autophagosome and thus controls the basal levels of autophagy. (4) HPSE can translocate into
the nucleus where it can modulate gene transcription or (5) it can be secreted in the extracellular
space. (6) Moreover, HPSE modulates the formation and the release of exosomes and (7) active
HPSE is also released and anchored to syndecan on exosome surfaces. Collectively, by regulating
autophagy and the production of exosomes, HPSE modulate several mechanisms which characterize
cancer chemoresistance [62,63].

3.9. Heparanase in Viral Pathogenesis

Several human and non-human viruses utilize HS as an attachment co-receptor to entry into
host cells: thus, HPSE, by modulating HS-bioavailability, is involved in viral-disease pathogenesis.
It has been proved that HPSE expression and activity are upregulated in response to Herpes
Simplex Virus (HSV-1) infection, via NF-kB pathway and, in turn, HPSE facilitates HS shedding
from plasma membranes helping the release of surface-bound virions [64]. HPSE-dependent
HS degradation similarly facilitates the infection of keratinocytes by Human Papilloma Virus
(HPV) [65] and, subsequently, HPV gene E6, by interacting with p53, increases HPSE expression [66].
HPSE is involved in the pathogenesis of several other viral diseases such as Adenovirus, Dengue Virus,
Hepatitis C Virus, and some retroviruses [67]. Looking forward, it is important to keep in mind that
several cancers are induced by viruses and, thus, the same HPSE inhibitors may represent a useful tool
to fight viral infection and associated cancer.

4. Heparanase Inhibition as Pharmacological Strategy

Several classes of HPSE inhibitors were developed in the last two decades ranging from
monoclonal antibodies, small-molecules to polysulfated saccharides-molecule inhibitors.

Antibodies against HPSE are an efficient strategy to inhibit its activity. Recently, two monoclonal
antibodies were described: one against the KKDC peptide and the other against the full-length
heparanase protein. The result was that they were able to neutralize extracellular HPSE and to
decrease its intracellular contents [68]. Small-molecule inhibitors are characterized by high variability
in molecular weight, relevant functional group and physiochemical properties supporting the idea that
HPSE could be inhibited by several mechanisms and several compounds with different structures [4].
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However, the only HPSE-inhibitor compounds that have reached the phase of clinical trial belong
to the class of polysaccharides. The development of these compounds began by observing heparin
capacity to inhibit HPSE activity because of its competition with HS for binding to the enzyme.
Currently, four HPSE-inhibitors are being tracked: PI-88, PG545, Roneparstat and M402. PG545 is a
fully-sulphated HS mimetic, which is able to inhibit HPSE enzymatic function on HS chain [69,70].
Roneparstat is a semisynthetic heparin-like polymer transformed into a 15-25 kDa glycol-split N-acetyl
heparin with reduced anticoagulant properties and a powerful anti-HPSE activity [71]. It has positively
completed Phase I study with dexamethasone in patients with advanced multiple myeloma [72].
M402-necuparanid is another glycol-split HS mimetic with low molecular weight (5-8 kDa). It is
currently under Phase II trial investigation in patients with pancreatic cancer [4].

5. Conclusions

Initially, HPSE has been identified as an enzyme with glycosidase activity implicated in the
invasion of tumor cells. However, over the years, HPSE has been shown to be involved in many
other pathological situations. It is now clear that considering its double enzymatic and non-enzymatic
function and its intra and extracellular localization, HPSE can be defined as a multifunctional protein
whose action is decisive in the establishment and development of numerous diseases. Considering
that once the activity of HPSE is inhibited, no other molecule is able to perform a similar function,
this enzyme has proved to be more and more eligible as a pharmacological target. HPSE inhibitors are
currently being tested in several clinical trials, and some have already shown some antitumor efficacy.
It is therefore expected that the next drugs aimed at inhibiting its activity may have therapeutic efficacy
not only in the field of oncology but, hopefully, also for other diseases for which HPSE is a determinant
etiological factor.
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