55 research outputs found

    Policing the community together: the impact of technology on citizen engagement

    Get PDF
    Despite broad and often varied underlying definitions, a common theme throughout community and neighbourhood policing strategies establishes the need to target improvements in the relationship and level of engagement between the police and the communities they serve. Community policing approaches have long underpinned a desire to move away from reactive policing models towards those which establish a more proactive philosophy, responsive to the wants and needs of the community. The near ubiquitous proliferation of smartphones and other ICTs (Information and Communication Technologies) means they are often seen as a vector through which initiatives of all kinds can instil a culture of proactive engagement with their respective stakeholder communities. This paper builds upon existing research which suggests that technologies for crime prevention should be designed to support communications and problem-solving rather than used simply as a means to disseminate information, unpacking a number of the core concepts that are considered central to participation and effective engagement; social capital, public participation and social and digital inclusion. Moreover, examples of wider initiatives are comparatively discussed, not just those associated with community policing, which target the engagement of communities through the use of technology, and more specifically mobile applications, before reflecting on the empirical evidence and experiences gleaned through the EU H2020 funded ‘UNITY’ project, a project that sought to establish effective strategies for engagement between police and citizen communities

    Time-like flows of energy-momentum and particle trajectories for the Klein-Gordon equation

    Get PDF
    The Klein-Gordon equation is interpreted in the de Broglie-Bohm manner as a single-particle relativistic quantum mechanical equation that defines unique time-like particle trajectories. The particle trajectories are determined by the conserved flow of the intrinsic energy density which can be derived from the specification of the Klein-Gordon energy-momentum tensor in an Einstein-Riemann space. The approach is illustrated by application to the simple single-particle phenomena associated with square potentials.Comment: 14 pages, 11 figure

    Hotspots in the grid: Avian sensitivity and vulnerability to collision risk from energy infrastructure interactions in Europe and North Africa

    Get PDF
    Wind turbines and power lines can cause bird mortality due to collision or electrocution. The biodiversity impacts of energy infrastructure (EI) can be minimised through effective landscape-scale planning and mitigation. The identification of high-vulnerability areas is urgently needed to assess potential cumulative impacts of EI while supporting the transition to zero carbon energy. We collected GPS location data from 1,454 birds from 27 species susceptible to collision within Europe and North Africa and identified areas where tracked birds are most at risk of colliding with existing EI. Sensitivity to EI development was estimated for wind turbines and power lines by calculating the proportion of GPS flight locations at heights where birds were at risk of collision and accounting for species' specific susceptibility to collision. We mapped the maximum collision sensitivity value obtained across all species, in each 5 × 5 km grid cell, across Europe and North Africa. Vulnerability to collision was obtained by overlaying the sensitivity surfaces with density of wind turbines and transmission power lines. Results: Exposure to risk varied across the 27 species, with some species flying consistently at heights where they risk collision. For areas with sufficient tracking data within Europe and North Africa, 13.6% of the area was classified as high sensitivity to wind turbines and 9.4% was classified as high sensitivity to transmission power lines. Sensitive areas were concentrated within important migratory corridors and along coastlines. Hotspots of vulnerability to collision with wind turbines and transmission power lines (2018 data) were scattered across the study region with highest concentrations occurring in central Europe, near the strait of Gibraltar and the Bosporus in Turkey. Synthesis and applications. We identify the areas of Europe and North Africa that are most sensitive for the specific populations of birds for which sufficient GPS tracking data at high spatial resolution were available. We also map vulnerability hotspots where mitigation at existing EI should be prioritised to reduce collision risks. As tracking data availability improves our method could be applied to more species and areas to help reduce bird-EI conflicts

    Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices

    No full text
    Tidal turbines and wave energy devices may affect seabird populations through collision mortality, disturbance and habitat loss. Given the pressures to harness tidal and wave energy, especially in Scottish waters, there is an urgent need to assess population-level impacts on seabird species. With a lack of deployed devices to monitor in areas of importance for seabirds, our approach uses data from scientific literature on seabird ecology and conservation importance likely to influence population vulnerability to “wet renewables” in Scottish waters. At this stage however, we can only infer likely interactions with tidal and wave devices. We identify black guillemot, razorbill, European shag, common guillemot, great cormorant, divers and Atlantic puffin as the species most vulnerable to adverse effects from tidal turbines in Scottish waters. We identify divers as the species most vulnerable to adverse effects from wave energy devices in Scottish waters. Wave energy devices seem likely to represent a lesser hazard to seabirds than tidal turbines, and both forms of energy capture seem likely to represent a lower hazard to seabirds than offshore wind farms (wind-power plants). The indices developed here for Scottish seabird populations could be applied to populations elsewhere. This approach will help in identifying likely impacts of tidal and wave energy deployments on seabirds, and in optimizing deployment of resources for compulsory environmental monitoring

    Great skua (Stercorarius skua) movements at sea in relation to marine renewable energy developments

    No full text
    Marine renewable energy developments (MREDs) are an increasing feature of the marine environment. Owing to the relatively small number of existing developments and the early stage of their associated environmental monitoring programmes, the effects of MREDs on seabirds are not fully known. Our ability to fully predict potential effects is limited by a lack of knowledge regarding movements of seabirds at sea. We used GPS tracking to improve our understanding of the movements at sea of a protected seabird species breeding in Scotland, the great skua (Stercorarius skua), to better predict how this species may be affected by MREDs. We found that the overlap of great skuas with leased and proposed MREDs was low; particularly with offshore wind sites, which are predicted to present a greater risk to great skuas than wave or tidal-stream developments. Failed breeders overlapped with larger areas of MREDs than breeding birds but the overall overlap with core areas used remained low. Overlap with wave energy development sites was greater than for offshore wind and tidal-stream sites. Comparison of 2011 data with historical data indicates that distances travelled by great skuas have likely increased over recent decades. This suggests that basing marine spatial planning decisions on short-term tracking data could be less informative than longer-term data

    Avian vulnerability to wind farm collision through the year: Insights from lesser black-backed gulls (<i>Larus fuscus</i>) tracked from multiple breeding colonies

    No full text
    1. Wind energy generation has become an important means to reduce reliance on fossil fuels and mitigate against human-induced climate change, but could also represent a significant human-wildlife conflict. Airborne taxa such as birds may be particularly sensitive to collision mortality with wind turbines, yet the relative vulnerability of species’ populations across their annual life cycles has not been evaluated. 2. Using GPS telemetry, we studied the movements of lesser black-backed gulls Larus fuscus from three UK breeding colonies through their annual cycle. We modelled the distance travelled by birds at altitudes between the minimum and maximum rotor sweep zone of turbines, combined with the probability of collision, to estimate sensitivity to collision. Sensitivity was then combined with turbine density (exposure) to evaluate spatio-temporal vulnerability. 3. Sensitivity was highest near to colonies during the breeding season, where a greater distance travelled by birds was in concentrated areas where they were exposed to turbines. 4. Consequently, vulnerability was high near to colonies but was also high at some migration bottlenecks and wintering sites where, despite a reduced sensitivity, exposure to turbines was greatest. 5. Synthesis and applications. Our framework combines bird-borne telemetry and spatial data on the location of wind turbines to identify potential areas of conflict for migratory populations throughout their annual cycle. This approach can aid the wind farm planning process by: (1) providing sensitivity maps to inform wind farm placement, helping minimise impacts; (2) identifying areas of high vulnerability where mitigation warrants exploration; (3) highlighting potential cumulative impacts of developments over international boundaries; and (4) informing the conservation status of species at protected sites. Our methods can identify pressures and linkages for populations using effect-specific metrics that are transferable and could help resolve other human-wildlife conflicts
    corecore