303 research outputs found

    Definitive Identification of the Transition between Small- to Large-Scale Clustering for Lyman Break Galaxies

    Full text link
    We report angular correlation function (ACF) of Lyman Break Galaxies (LBGs) with unprecedented statistical quality on the basis of 16,920 LBGs at z=4 detected in the 1 deg^2 sky of the Subaru/XMM-Newton Deep Field. The ACF significantly departs from a power law, and shows an excess on small scale. Particularly, the ACF of LBGs with i'<27.5 have a clear break between the small and large-scale regimes at the angular separation of ~7'' whose projected length corresponds to the virial radius of dark halos with a mass of 10^11-12 Mo, indicating multiple LBGs residing in a single dark halo. Both on small (2''<theta<3'') and large (40''<theta<400'') scales, clustering amplitudes monotonically increase with luminosity for the magnitude range of i'=24.5-27.5, and the small-scale clustering shows a stronger luminosity dependence than the large-scale clustering. The small-scale bias reaches b~10-50, and the outskirts of small-scale excess extend to a larger angular separation for brighter LBGs. The ACF and number density of LBGs can be explained by the cold dark matter model.Comment: Accepted for publication in ApJL. 5 pages, 4 figures. The text and Figures 2-4 have been revised. There is no major change which affects to the main discussion shown in the original preprint. This paper with high resolution figures is available at http://www-int.stsci.edu/~ouchi/work/astroph/sxds_z4LBG/ouchi_highres.pdf (PDF

    Large, Negative Magnetoresistance in an Oleic Acid-Coated Fe3O4 Nanocrystal Self-Assembled Film

    Get PDF
    An oleic acid-coated Fe3O4 nanocrystal self-assembled film was fabricated via drop casting of colloidal particles on a SiO2/Si substrate. The film exhibited bifurcation of the zero-field-cooled and field-cooled magnetizations around 250 K. The nonlinear current-voltage (I–V) characteristics between the source and drain electrodes in both zero and non-zero magnetic fields (H) were observed above and below the bifurcation temperature. A large negative magnetoresistance (MR ≈ −60%) was achieved at 200 K and H = 1 T. Even at 295 K and 0.2 T, the negative MR (≈ −50%) persisted. A Fowler–Nordheim plot and power-law scaling of the I–V characteristics revealed that the current flows through two-dimensional (2D) percolated electron tunneling paths. The enlargement of MR can be attributed to spin-dependent electron tunneling between magnetically coupled Fe3O4 nanocrystals self-assembled in 2D ordered arrays

    Construction of Cardiac Tissue Rings Using a Magnetic Tissue Fabrication Technique

    Get PDF
    Here we applied a magnetic force-based tissue engineering technique to cardiac tissue fabrication. A mixture of extracellular matrix precursor and cardiomyocytes labeled with magnetic nanoparticles was added into a well containing a central polycarbonate cylinder. With the use of a magnet, the cells were attracted to the bottom of the well and allowed to form a cell layer. During cultivation, the cell layer shrank towards the cylinder, leading to the formation of a ring-shaped tissue that possessed a multilayered cell structure and contractile properties. These results indicate that magnetic tissue fabrication is a promising approach for cardiac tissue engineering

    Parabolic Jets from the Spinning Black Hole in M87

    Get PDF
    The M87 jet is extensively examined by utilizing general relativistic magnetohydrodynamic (GRMHD) simulations as well as the steady axisymmetric force-free electrodynamic (FFE) solution. Quasi-steady funnel jets are obtained in GRMHD simulations up to the scale of 100\sim 100 gravitational radius (rgr_{\rm g}) for various black hole (BH) spins. As is known, the funnel edge is approximately determined by the following equipartitions; i) the magnetic and rest-mass energy densities and ii) the gas and magnetic pressures. Our numerical results give an additional factor that they follow the outermost parabolic streamline of the FFE solution, which is anchored to the event horizon on the equatorial plane. We also identify the matter dominated, non-relativistic corona/wind play a dynamical role in shaping the funnel jet into the parabolic geometry. We confirm a quantitative overlap between the outermost parabolic streamline of the FFE jet and the edge of jet sheath in VLBI observations at 101\sim 10^{1}-105rg10^{5} \, r_{\rm g}, suggesting that the M87 jet is likely powered by the spinning BH. Our GRMHD simulations also indicate a lateral stratification of the bulk acceleration (i.e., the spine-sheath structure) as well as an emergence of knotty superluminal features. The spin characterizes the location of the jet stagnation surface inside the funnel. We suggest that the limb-brightened feature could be associated with the nature of the BH-driven jet, if the Doppler beaming is a dominant factor. Our findings can be examined with (sub-)mm VLBI observations, giving a clue for the origin of the M87 jet.Comment: 29 pages, 23 figures, accepted for publication in Ap

    Impact of Gba2 on neuronopathic Gaucher’s disease and α-synuclein accumulation in medaka (Oryzias latipes)

    Get PDF
    Homozygous mutations in the lysosomal glucocerebrosidase gene, GBA1, cause Gaucher's disease (GD), while heterozygous mutations in GBA1 are a strong risk factor for Parkinson's disease (PD), whose pathological hallmark is intraneuronal α-synuclein (asyn) aggregates. We previously reported that gba1 knockout (KO) medaka exhibited glucosylceramide accumulation and neuronopathic GD phenotypes, including short lifespan, the dopaminergic and noradrenergic neuronal cell loss, microglial activation, and swimming abnormality, with asyn accumulation in the brains. A recent study reported that deletion of GBA2, non-lysosomal glucocerebrosidase, in a non-neuronopathic GD mouse model rescued its phenotypes. In the present study, we generated gba2 KO medaka and examined the effect of Gba2 deletion on the phenotypes of gba1 KO medaka. The Gba2 deletion in gba1 KO medaka resulted in the exacerbation of glucosylceramide accumulation and no improvement in neuronopathic GD pathological changes, asyn accumulation, or swimming abnormalities. Meanwhile, though gba2 KO medaka did not show any apparent phenotypes, biochemical analysis revealed asyn accumulation in the brains. gba2 KO medaka showed a trend towards an increase in sphingolipids in the brains, which is one of the possible causes of asyn accumulation. In conclusion, this study demonstrated that the deletion of Gba2 does not rescue the pathological changes or behavioral abnormalities of gba1 KO medaka, and GBA2 represents a novel factor affecting asyn accumulation in the brains

    The Number Density of Old Passively-Evolving Galaxies at z=1 in the Subaru/XMM-Newton Deep Survey Field

    Full text link
    We obtained the number counts and the rest-frame B-band luminosity function of the color-selected old passively-evolving galaxies (OPEGs) at z=1 with very high statistical accuracy using a large and homogeneous sample of about 4000 such objects with z' <25 detected in the area of 1.03 deg^2 in the Subaru/XMM-Newton Deep Survey (SXDS) field. Our selection criteria are defined on the i'-z' and R-z' color-magnitude plane so that OPEGs at z=0.9-1.1 with formation redshift z_f=2-10 are properly sampled. The limiting magnitude corresponds to the luminosity of galaxies with M_*+3 at z=0. We made a pilot redshift observations for 99 OPEG candidates with 19 < z' < 22 and found that at least 78% (73/93) of the entire sample, or 95% (73/77) of these whose redshifts were obtained are indeed lie between z=0.87 and 1.12 and the most of their spectra show the continuum break and strong Ca H and K lines, indicating that these objects are indeed dominated by the old stellar populations. We then compare our results with the luminosity functions of the color- or the morphologically-selected early type galaxies at z=0 taking the evolutionary factor into account and found that the number density of old passive galaxies with sim M_* magnitude at z~1 averaged over the SXDS area is 40-60% of the equivalently red galaxies and 60-85% of the morphologically-selected E/S0 galaxies at z=0 depending on their luminosity evolution. It is revealed that more than half, but not all, of the present-day early-type galaxies had already been formed into quiescent passive galaxies at z=1.Comment: 28 pages, accepted for publication in Astrophysical Journal. The full version of the paper including Fig.3 and Fig.4 (large size) in full resolution is put at http://optik2.mtk.nao.ac.jp/~yamada/astronomy/sxdsred.htm

    The Subaru Deep Field Project: Lymanα\alpha Emitters at Redshift of 6.6

    Full text link
    We present new results of a deep optical imaging survey using a narrowband filter (NB921NB921) centered at λ=\lambda = 9196 \AA ~ together with BB, VV, RR, ii^\prime, and zz^\prime broadband filters in the sky area of the Subaru Deep Field which has been promoted as one of legacy programs of the 8.2m Subaru Telescope. We obtained a photometric sample of 58 Lyα\alpha emitter candidates at zz \approx 6.5 -- 6.6 among 180\sim 180 strong NB921NB921-excess (zNB921>1.0z^\prime - NB921 > 1.0) objects together with a color criterion of iz>1.3i^\prime - z^\prime > 1.3. We then obtained optical spectra of 20 objects in our NB921NB921-excess sample and identified at least nine Lyα\alpha emitters at z6.5z \sim 6.5 -- 6.6 including the two emitters reported by Kodaira et al. (2003). Since our Lyα\alpha emitter candidates are free from strong amplification of gravitational lensing, we are able to discuss their observational properties from a statistical point of view. Based on these new results, we obtain a lower limit of the star formation rate density of ρSFR5.5×104\rho_{\rm SFR} \simeq 5.5 \times 10^{-4} h0.7h_{0.7} MM_\odot yr1^{-1} Mpc3^{-3} at z6.6z \approx 6.6, being consistent with our previous estimate. We discuss the nature of star-formation activity in galaxies beyond z=6z=6.Comment: 49 pages, 16 figures, PASJ, Vol. 57, No. 1, in pres
    corecore