27 research outputs found
Extensive alterations of the whole-blood transcriptome are associated with body mass index: results of an mRNA profiling study involving two large population-based cohorts
Background: Obesity, defined as pathologically increased body mass index (BMI),is strongly related to an increased risk for numerous common cardiovascular and metabolic diseases. It is particularly associated with insulin resistance, hyperglycemia, and systemic oxidative stress and represents the most important risk factor for type 2 diabetes (T2D). However, the pathophysiological mechanisms underlying these associations are still not completely understood. Therefore, in order to identify potentially disease-relevant BMI-associated gene expression signatures, a transcriptome-wide association study (TWAS) on BMI was performed. Methods: Whole-blood mRNA levels determined by array-based transcriptional profiling were correlated with BMI in two large independent population-based cohort studies (KORA F4 and SHIP-TREND) comprising a total of 1977 individuals. Results: Extensive alterations of the whole-blood transcriptome were associated with BMI: More than 3500 transcripts exhibited significant positive or negative BMI-correlation. Three major whole-blood gene expression signatures associated with increased BMI were identified. The three signatures suggested: i) a ratio shift from mature erythrocytes towards reticulocytes, ii) decreased expression of several genes essentially involved in the transmission and amplification of the insulin signal, and iii) reduced expression of several key genes involved in the defence against reactive oxygen species (ROS). Conclusions: Whereas the first signature confirms published results, the other two provide possible mechanistic explanations for well-known epidemiological findings under conditions of increased BMI, namely attenuated insulin signaling and increased oxidative stress. The putatively causative BMI-dependent down-regulation of the expression of numerous genes on the mRNA level represents a novel finding. BMI-associated negative transcriptional regulation of insulin signaling and oxidative stress management provide new insights into the pathogenesis of metabolic syndrome and T2D
Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A
Elevated levels of acute-phase serum amyloid A (A-SAA) cause amyloidosis and are a risk factor for atherosclerosis and its clinical complications, type 2 diabetes, as well as various malignancies. To investigate the genetic basis of A-SAA levels, we conducted the first genome-wide association study on baseline A-SAA concentrations in three population-based studies (KORA, TwinsUK, Sorbs) and one prospective case cohort study (LURIC), including a total of 4,212 participants of European descent, and identified two novel genetic susceptibility regions at 11p15.5-p13 and 1p31. The region at 11p15.5-p13 (rs4150642; p = 3.20×10−111) contains serum amyloid A1 (SAA1) and the adjacent general transcription factor 2 H1 (GTF2H1), Hermansky-Pudlak Syndrome 5 (HPS5), lactate dehydrogenase A (LDHA), and lactate dehydrogenase C (LDHC). This region explains 10.84% of the total variation of A-SAA levels in our data, which makes up 18.37% of the total estimated heritability. The second region encloses the leptin receptor (LEPR) gene at 1p31 (rs12753193; p = 1.22×10−11) and has been found to be associated with CRP and fibrinogen in previous studies. Our findings demonstrate a key role of the 11p15.5-p13 region in the regulation of baseline A-SAA levels and provide confirmative evidence of the importance of the 1p31 region for inflammatory processes and the close interplay between A-SAA, leptin, and other acute-phase proteins
Genome-wide Association Study of Change in Fasting Glucose over time in 13,807 non-diabetic European Ancestry Individuals
Type 2 diabetes (T2D) affects the health of millions of people worldwide. The identification of genetic determinants associated with changes in glycemia over time might illuminate biological features that precede the development of T2D. Here we conducted a genome-wide association study of longitudinal fasting glucose changes in up to 13,807 non-diabetic individuals of European descent from nine cohorts. Fasting glucose change over time was defined as the slope of the line defined by multiple fasting glucose measurements obtained over up to 14 years of observation. We tested for associations of genetic variants with inverse-normal transformed fasting glucose change over time adjusting for age at baseline, sex, and principal components of genetic variation. We found no genome-wide significant association (P < 5 x 10(-8)) with fasting glucose change over time. Seven loci previously associated with T2D, fasting glucose or HbA1c were nominally (P < 0.05) associated with fasting glucose change over time. Limited power influences unambiguous interpretation, but these data suggest that genetic effects on fasting glucose change over time are likely to be small. A public version of the data provides a genomic resource to combine with future studies to evaluate shared genetic links with T2D and other metabolic risk traits.Peer reviewe
DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.
BACKGROUND: Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation. RESULTS: We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10-7) in the discovery panel of European ancestry and replicated (P < 2.29 × 10-4) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10-5), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10-3), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10-5). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants. CONCLUSION: We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation
Large multiethnic Candidate Gene Study for C-reactive protein levels: Identification of a novel association at CD36 in African Americans
C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women\u27s Health Initiative (WHI) and KORA studies. We observed array-wide significance (p \u3c 2.2 × 10-6) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 × 10 -6; CRP, p = 4.2 × 10-71; APOE, p = 1.6 × 10-6). The fourth significant locus, CD36 (p = 1.6 × 10 -6), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 × 10-5) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 × 10-10). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 × 10-6; CD36, p = 1.4 × 10 -6). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent. © 2014 Springer-Verlag
Genome-wide association study of change in fasting glucose over time in 13,807 non-diabetic European ancestry individuals
Type 2 diabetes (T2D) affects the health of millions of people worldwide. The identification of genetic determinants associated with changes in glycemia over time might illuminate biological features that precede the development of T2D. Here we conducted a genome-wide association study of longitudinal fasting glucose changes in up to 13,807 non-diabetic individuals of European descent from nine cohorts. Fasting glucose change over time was defined as the slope of the line defined by multiple fasting glucose measurements obtained over up to 14 years of observation. We tested for associations of genetic variants with inverse-normal transformed fasting glucose change over time adjusting for age at baseline, sex, and principal components of genetic variation. We found no genome-wide significant association (P < 5 × 10) with fasting glucose change over time. Seven loci previously associated with T2D, fasting glucose or HbA1c were nominally (P < 0.05) associated with fasting glucose change over time. Limited power influences unambiguous interpretation, but these data suggest that genetic effects on fasting glucose change over time are likely to be small. A public version of the data provides a genomic resource to combine with future studies to evaluate shared genetic links with T2D and other metabolic risk traits
Recommended from our members
Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans.
C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women's Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 × 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 × 10(-6); CRP, p = 4.2 × 10(-71); APOE, p = 1.6 × 10(-6)). The fourth significant locus, CD36 (p = 1.6 × 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 × 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 × 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 × 10(-6); CD36, p = 1.4 × 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent
Large multiethnic Candidate Gene Study for C-reactive protein levels: identification of a novel association at CD36 in African Americans.
C-reactive protein (CRP) is a heritable biomarker of systemic inflammation and a predictor of cardiovascular disease (CVD). Large-scale genetic association studies for CRP have largely focused on individuals of European descent. We sought to uncover novel genetic variants for CRP in a multiethnic sample using the ITMAT Broad-CARe (IBC) array, a custom 50,000 SNP gene-centric array having dense coverage of over 2,000 candidate CVD genes. We performed analyses on 7,570 African Americans (AA) from the Candidate gene Association Resource (CARe) study and race-combined meta-analyses that included 29,939 additional individuals of European descent from CARe, the Women's Health Initiative (WHI) and KORA studies. We observed array-wide significance (p < 2.2 × 10(-6)) for four loci in AA, three of which have been reported previously in individuals of European descent (IL6R, p = 2.0 × 10(-6); CRP, p = 4.2 × 10(-71); APOE, p = 1.6 × 10(-6)). The fourth significant locus, CD36 (p = 1.6 × 10(-6)), was observed at a functional variant (rs3211938) that is extremely rare in individuals of European descent. We replicated the CD36 finding (p = 1.8 × 10(-5)) in an independent sample of 8,041 AA women from WHI; a meta-analysis combining the CARe and WHI AA results at rs3211938 reached genome-wide significance (p = 1.5 × 10(-10)). In the race-combined meta-analyses, 13 loci reached significance, including ten (CRP, TOMM40/APOE/APOC1, HNF1A, LEPR, GCKR, IL6R, IL1RN, NLRP3, HNF4A and BAZ1B/BCL7B) previously associated with CRP, and one (ARNTL) previously reported to be nominally associated with CRP. Two novel loci were also detected (RPS6KB1, p = 2.0 × 10(-6); CD36, p = 1.4 × 10(-6)). These results highlight both shared and unique genetic risk factors for CRP in AA compared to populations of European descent
Genetic Determinants of Circulating Interleukin-1 Receptor Antagonist Levels and Their Association With Glycemic Traits
The proinflammatory cytokine interleukin (IL)-1β is implicated in the development of insulin resistance and β-cell dysfunction, whereas higher circulating levels of IL-1 receptor antagonist (IL-1RA), an endogenous inhibitor of IL-1β, has been suggested to improve glycemia and β-cell function in patients with type 2 diabetes. To elucidate the protective role of IL-1RA, this study aimed to identify genetic determinants of circulating IL-1RA concentration and to investigate their associations with immunological and metabolic variables related to cardiometabolic risk. In the analysis of seven discovery and four replication cohort studies, two single nucleotide polymorphisms (SNPs) were independently associated with circulating IL-1RA concentration (rs4251961 at the IL1RN locus [n = 13,955, P = 2.76 × 10−21] and rs6759676, closest gene locus IL1F10 [n = 13,994, P = 1.73 × 10−17]). The proportion of the variance in IL-1RA explained by both SNPs combined was 2.0%. IL-1RA–raising alleles of both SNPs were associated with lower circulating C-reactive protein concentration. The IL-1RA–raising allele of rs6759676 was also associated with lower fasting insulin levels and lower HOMA insulin resistance. In conclusion, we show that circulating IL-1RA levels are predicted by two independent SNPs at the IL1RN and IL1F10 loci and that genetically raised IL-1RA may be protective against the development of insulin resistance.</jats:p