1,552 research outputs found

    Dynamics and Thermodynamics of a Novel Phase of NaAlH4

    Full text link
    We characterize a novel orthorhombic phase (gamma) of NaAlH4, discovered using first-principles molecular dynamics, and discuss its relevance to the dehydrogenation mechanism. This phase is close in energy to the known low-temperature structure and becomes the stabler phase above 320 K, thanks to a larger vibrational entropy associated with AlH4 rotational modes. The structural similarity of gamma-NaAlH4 to alpha-Na3AlH6 suggests it acts as a key intermediate during hydrogen release. Findings are consistent with recent experiments recording an unknown phase during dehydrogenation.Comment: 10 pages, 4 figures, 1 table + supplementary info; In press (Physical Review Letters

    Planet--planet scattering in circumstellar gas disks

    Full text link
    Hydrodynamical simulations of two giant planets embedded in a gaseous disk have shown that in case of a smooth convergent migration they end up trapped into a mean motion resonance. These findings have led to the conviction that the onset of dynamical instability causing close encounters between the planets can occur only after the dissipation of the gas when the eccentricity damping is over. We show that a system of three giant planets may undergo planet-planet scattering when the gaseous disk, with density values comparable to that of the Minimum Mass Solar Nebula, is still interacting with the planets. The hydrodynamical code FARGO--2D--1D is used to model the evolution ofthe disk and planets, modified to properly handle close encounters between the massive bodies. Our simulations predict a variety of different outcomes of the scattering phase which includes orbital exchange, planet merging and scattering of a planet in a hyperbolic orbit. This implies thatthe final fate of a multiplanet system under the action of the disk torques is not necessarily a packed resonant configuration.Comment: Astronomy and Astrophysics Letters, in pres

    Asteroid detection at millimetric wavelengths with the Planck survey

    Get PDF
    The Planck mission, originally devised for cosmological studies, offers the opportunity to observe Solar System objects at millimetric and submillimetric wavelengths. We concentrate in this paper on the asteroids of the Main Belt. We intend to estimate the number of asteroids that can can be detected during the mission and to evaluate the strength of their signal. We have rescaled the instrument sensitivities, calculated by the LFI and HFI teams for sources fixed in the sky, introducing some degradation factors to properly account for moving objects. In this way a detection threshold is derived for asteroidal detection that is related to the diameter of the asteroid and its geocentric distance. We have developed a numerical code that models the detection of asteroids in the LFI and HFI channels during the mission. This code perfoprms a detailed integration of the orbits of the asteroids in the timespan of the mission and identifies those bodies that fall in the beams of Planck and their signal stenght. According to our simulations, a total of 397 objects will be observed by Planck and an asteroidal body will be detected in some beam in 30% of the total sky scan--circles. A significant fraction (in the range from ~50 to 100 objects) of the 397 asteroids will be observed with a high S/N ratio. Flux measurements of a large sample of asteroids in the submillimeter and millimeter range are relevant since they allow to analyze the thermal emission and its relation to the surface and regolith properties. Furthermore, it will be possible to check on a wider base the two standard thermal models, based on a nonrotating or rapidly rotating sphere. Our method can also be used to separate Solar System sources from cosmological sources in the survey. This work is based on Planck LFI activities.Comment: Contact person [email protected]. Accepted for pubblication in New Astronomy (2002). 1 figure in .eps format. Needs elsart.cls style + harvard.st

    Population and Size Distribution of Small Jovian Trojan Asteroids

    Get PDF
    We present a study of Jovian Trojan objects detected serendipitously during the course of a sky survey conducted at the University of Hawaii 2.2-meter telescope. We used a 8192 x 8192 pixel charge-coupled device (CCD) mosaic to observe 20 deg^2 at locations spread over the L4 Lagrangian swarm and reached a limiting magnitude V = 22.5 mag (50% of maximum detection efficiency). Ninety-three Jovian Trojans were detected with radii 2 - 20 km (assumed albedo 0.04). Their differential magnitude distribution has a slope of 0.40 +/- 0.05 corresponding to a power law size distribution index 3.0 +/- 0.3 (1-sigma). The total number of L4 Trojans with radii > 1 km is of order 1.6 x 10^5 and their combined mass (dominated by the largest objects) is ~ 10^{-4} M_{Earth}. The bias-corrected mean inclination is 13.7 +/- 0.5 deg. We also discuss the size and spatial distribution of the L4 swarm.Comment: 21 pages, 11 figures. AJ, in pres

    On the eccentricity of self-gravitating circumstellar disks in eccentric binary systems

    Full text link
    We study the evolution of circumstellar massive disks around the primary star of a binary system focusing on the computation of disk eccentricity. In particular, we concentrate on its dependence on the binary eccentricity. Self-gravity is included in our numerical simulations. Our standard model assumes a semimajor axis for the binary of 30 AU, the most probable value according to the present binary statistics.Comment: Accepted for publication on A&

    Transition state method and Wannier functions

    Full text link
    We propose a computational scheme for materials where standard Local Density Approximation (LDA) fails to produce a satisfactory description of excitation energies. The method uses Slater's "transition state" approximation and Wannier functions basis set. We define a correction to LDA functional in such a way that its variation produces one-electron energies for Wannier functions equal to the energies obtained in "transition state" constrained LDA calculations. In the result eigenvalues of the proposed functional could be interpreted as excitation energies of the system under consideration. The method was applied to MgO, Si, NiO and BaBiO3_3 and gave an improved agreement with experimental data of energy gap values comparing with LDA.Comment: 13 pages, 6 figures, 1 tabl

    Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach

    Full text link
    Transition-metal centers are the active sites for many biological and inorganic chemical reactions. Notwithstanding this central importance, density-functional theory calculations based on generalized-gradient approximations often fail to describe energetics, multiplet structures, reaction barriers, and geometries around the active sites. We suggest here an alternative approach, derived from the Hubbard U correction to solid-state problems, that provides an excellent agreement with correlated-electron quantum chemistry calculations in test cases that range from the ground state of Fe2_2 and Fe2_2^- to the addition-elimination of molecular hydrogen on FeO+^+. The Hubbard U is determined with a novel self-consistent procedure based on a linear-response approach.Comment: 5 pages, 3 figures, Phys. Rev. Lett., in pres

    Band Structure and Quantum Conductance of Nanostructures from Maximally-Localized Wannier Functions: The Case of Functionalized Carbon Nanotubes

    Full text link
    We have combined large-scale, Γ\Gamma-point electronic-structure calculations with the maximally-localized Wannier functions approach to calculate efficiently the band structure and the quantum conductance of complex systems containing thousands of atoms while maintaining full first-principles accuracy. We have applied this approach to study covalent functionalizations in metallic single-walled carbon nanotubes. We find that the band structure around the Fermi energy is much less dependent on the chemical nature of the ligands than on the sp3sp^3 functionalization pattern disrupting the conjugation network. Common aryl functionalizations are more stable when paired with saturating hydrogens; even when paired, they still act as strong scattering centers that degrade the ballistic conductance of the nanotubes already at low degrees of coverage.Comment: To be published in Phys. Rev. Let

    Eccentricity of radiative discs in close binary-star systems

    Full text link
    Discs in binaries have a complex behavior because of the perturbations of the companion star. Planet formation in binary-star systems both depend on the companion star parameters and on the properties of the circumstellar disc. An eccentric disc may increase the impact velocity of planetesimals and therefore jeopardize the accumulation process. We model the evolution of discs in close binaries including the effects of self-gravity and adopting different prescriptions to model the disc's radiative properties. We focus on the dynamical properties and evolutionary tracks of the discs. We use the hydrodynamical code FARGO and we include in the energy equation heating and cooling effects. Radiative discs have a lower disc eccentricity compared to locally isothermal discs with same temperature profile. As a consequence, we do not observe the formation of an internal elliptical low density region as in locally isothermal disc models. However, the disc eccentricity depends on the disc mass through the opacities. Akin to locally isothermal disc models, self-gravity forces the disc's longitude of pericenter to librate about a fixed orientation with respect to the binary apsidal line (π\pi). The disc's radiative properties play an important role in the evolution of discs in binaries. A radiative disc has an overall shape and internal structure that are significantly different compared to a locally isothermal disc with same temperature profile. This is an important finding both for describing the evolutionary track of the disc during its progressive mass loss, and for planet formation since the internal structure of the disc is relevant for planetesimals growth in binary systems. The non-symmetrical distribution of mass in these discs causes large eccentricities for planetesimals that may affect their growth.Comment: accepted for publication in A&A (abstract truncated to comply with astro-ph rules

    A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments

    Get PDF
    The computational study of chemical reactions in complex, wet environments is critical for applications in many fields. It is often essential to study chemical reactions in the presence of applied electrochemical potentials, taking into account the non-trivial electrostatic screening coming from the solvent and the electrolytes. As a consequence the electrostatic potential has to be found by solving the generalized Poisson and the Poisson-Boltzmann equation for neutral and ionic solutions, respectively. In the present work solvers for both problems have been developed. A preconditioned conjugate gradient method has been implemented to the generalized Poisson equation and the linear regime of the Poisson-Boltzmann, allowing to solve iteratively the minimization problem with some ten iterations of a ordinary Poisson equation solver. In addition, a self-consistent procedure enables us to solve the non-linear Poisson-Boltzmann problem. Both solvers exhibit very high accuracy and parallel efficiency, and allow for the treatment of different boundary conditions, as for example surface systems. The solver has been integrated into the BigDFT and Quantum-ESPRESSO electronic-structure packages and will be released as an independent program, suitable for integration in other codes
    corecore