90 research outputs found

    Procedimiento para la obtención de micro- o nanopartículas sólidas

    Get PDF
    Procedimiento para la obtencion de micro- o nanoparticulas solidas. La invencion proporciona un nuevo procedimiento para la obtencion de micro- o nanoparticulas solidas con estructura homogenea. Se proporciona un procedimiento que permite obtener micro- o nanoparticulas solidas de estructura homogenea, con un tamano de particula inferior a 10 ƒÊm donde el compuesto solido procesado revela la naturaleza, cristalina, amorfa, polimorfica, etc..., propia del compuesto de partida. De acuerdo con la invencion se proporciona un procedimiento que ademas permite obtener micro- o nanoparticulas solidas con una morfologia sustancialmente esferoidal.Peer reviewedConsejo Superior de Investigaciones Científicas (Esspaña), Centro de Investigación Biomédica en Red en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN)A1 Solicitud de patente con informe sobre el estado de la técnic

    Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Introduction]: The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes.[Objective]: To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes.[Methods]: A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides.[Results]: We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion.[Conclusions]: We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for autoimmune diseases.This work was supported by a grant from Spanish Government (FIS PI12/00195). IPA was supported by AGAUR, Generalitat de Catalunya. MVP and RA are supported by the Health Dept. of the Catalan Government, Generalitat de Catalunya.Peer reviewe

    A Novel Liposome-Based Nanocarrier Loaded with an LPS-dsRNA Cocktail for Fish Innate Immune System Stimulation

    Get PDF
    Development of novel systems of vaccine delivery is a growing demand of the aquaculture industry. Nano- and micro- encapsulation systems are promising tools to achieve efficient vaccines against orphan vaccine fish diseases. In this context, the use of liposomal based-nanocarriers has been poorly explored in fish; although liposomal nanocarriers have successfully been used in other species. Here, we report a new ~125 nm-in-diameter unilamellar liposome-encapsulated immunostimulant cocktail containing crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid [poly (I:C)], a synthetic analog of dsRNA virus, aiming to be used as a non-specific vaccine nanocarrier in different fish species. This liposomal carrier showed high encapsulation efficiencies and low toxicity not only in vitro using three different cellular models but also in vivo using zebrafish embryos and larvae. We showed that such liposomal LPS-dsRNA cocktail is able to enter into contact with zebrafish hepatocytes (ZFL cell line) and trout macrophage plasma membranes, being preferentially internalized through caveolae-dependent endocytosis, although clathrin-mediated endocytosis in ZFL cells and macropinocytocis in macrophages also contribute to liposome uptake. Importantly, we also demonstrated that this liposomal LPS-dsRNA cocktail elicits a specific pro-inflammatory and anti-viral response in both zebrafish hepatocytes and trout macrophages. The design of a unique delivery system with the ability to stimulate two potent innate immunity pathways virtually present in all fish species represents a completely new approach in fish health

    Buttermilk as Encapsulating Agent : Effect of Ultra-High-Pressure Homogenization on Chia Oil-in-Water Liquid Emulsion Formulations for Spray Drying

    Get PDF
    Functional foods are highly demanded by consumers. Omega-3 rich oil and commercial buttermilk (BM), as functional components, used in combination to produce emulsions for further drying may facilitate the incorporation to foods. Ultra-high-pressure homogenization (UHPH) has a great potential for technological and nutritional aspects in emulsions production. The present study aimed to examine the potential improvement of UHPH technology in producing buttermilk-stabilized omega-3 rich emulsions (BME) for further drying, compared with conventional homogenization. Oil-in-water emulsions formulated with 10% chia: sunflower oil (50:50); 30% maltodextrin and 4 to 7% buttermilk were obtained by using conventional homogenization at 30 MPa and UHPH at 100 and 200 MPa. Particle size analysis, rheological evaluation, colloidal stability, zeta-potential measurement, and microstructure observations were performed in the BME. Subsequent spray drying of emulsions were made. As preliminary approximation for evaluating differences in the homogenization technology applied, encapsulation efficiency and morphological characteristics of on spray-dried emulsions (SDE) containing 21.3 to 22.7% oil content (dry basis) were selected. This study addresses the improvement in stability of BME treated by UHPH when compared to conventional homogenization and the beneficial consequences in encapsulation efficiency and morphology of SDE

    A Novel Liposome-Based Nanocarrier Loaded with an LPS-dsRNA Cocktail for Fish Innate Immune System Stimulation

    Get PDF
    Development of novel systems of vaccine delivery is a growing demand of the aquaculture industry. Nano- and micro- encapsulation systems are promising tools to achieve efficient vaccines against orphan vaccine fish diseases. In this context, the use of liposomal based-nanocarriers has been poorly explored in fish; although liposomal nanocarriers have successfully been used in other species. Here, we report a new ~125 nm-in-diameter unilamellar liposome-encapsulated immunostimulant cocktail containing crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid [poly (I:C)], a synthetic analog of dsRNA virus, aiming to be used as a non-specific vaccine nanocarrier in different fish species. This liposomal carrier showed high encapsulation efficiencies and low toxicity not only in vitro using three different cellular models but also in vivo using zebrafish embryos and larvae. We showed that such liposomal LPS-dsRNA cocktail is able to enter into contact with zebrafish hepatocytes (ZFL cell line) and trout macrophage plasma membranes, being preferentially internalized through caveolae-dependent endocytosis, although clathrin-mediated endocytosis in ZFL cells and macropinocytocis in macrophages also contribute to liposome uptake. Importantly, we also demonstrated that this liposomal LPS-dsRNA cocktail elicits a specific pro-inflammatory and anti-viral response in both zebrafish hepatocytes and trout macrophages. The design of a unique delivery system with the ability to stimulate two potent innate immunity pathways virtually present in all fish species represents a completely new approach in fish health

    Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats

    Get PDF
    [Background and aims]: Although the beneficial effects of statins on stroke have been widely demonstrated both in experimental studies and in clinical trials, the aim of this study is to prepare and characterize a new liposomal delivery system that encapsulates simvastatin to improve its delivery into the brain. [Materials and methods]: In order to select the optimal liposome lipid composition with the highest capacity to reach the brain, male Wistar rats were submitted to sham or transitory middle cerebral arterial occlusion (MCAOt) surgery and treated (intravenous [IV]) with fluorescent-labeled liposomes with different net surface charges. Ninety minutes after the administration of liposomes, the brain, blood, liver, lungs, spleen, and kidneys were evaluated ex vivo using the Xenogen IVIS® Spectrum imaging system to detect the load of fluorescent liposomes. In a second substudy, simvastatin was assessed upon reaching the brain, comparing free and encapsulated simvastatin (IV) administration. For this purpose, simvastatin levels in brain homogenates from sham or MCAOt rats at 2 hours or 4 hours after receiving the treatment were detected through ultra-high-protein liquid chromatography. [Results]: Whereas positively charged liposomes were not detected in brain or plasma 90 minutes after their administration, neutral and negatively charged liposomes were able to reach the brain and accumulate specifically in the infarcted area. Moreover, neutral liposomes exhibited higher bioavailability in plasma 4 hours after being administered. The detection of simvastatin by ultra-high-protein liquid chromatography confirmed its ability to cross the blood-brain barrier, when administered either as a free drug or encapsulated into liposomes. [Conclusion]: This study confirms that liposome charge is critical to promote its accumulation in the brain infarct after MCAOt. Furthermore, simvastatin can be delivered after being encapsulated. Thus, simvastatin encapsulation might be a promising strategy to ensure that the drug reaches the brain, while increasing its bioavailability and reducing possible side effects.The research leading to these results received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreements number 201024 and number 202213 (European Stroke Network). Neurovascular Research Laboratory takes part in the Spanish stroke research network INVICTUS (RD12/0014/0005). This study was partially funded by projects FIS 11/0176 on stroke biomarkers research and EC07/90195 on increasing safety and efficacy of simvastatin neuroprotection.Peer Reviewe

    LipoBots : using liposomal vesicles as protective shell of urease-based nanomotors

    Get PDF
    Developing self-powered nanomotors made of biocompatible and functional components is of paramount importance in future biomedical applications. Herein, the functional features of LipoBots (LBs) composed of a liposomal carrier containing urease enzymes for propulsion, including their protective properties against acidic conditions and their on-demand triggered activation, are reported. Given the functional nature of liposomes, enzymes can be either encapsulated or coated on the surface of the vesicles. The influence of the location of urease on motion dynamics is first studied, finding that the surface-urease LBs undergo self-propulsion whereas the encapsulated-urease LBs do not. However, adding a percolating agent present in the bile salts to the encapsulated-urease LBs triggers active motion. Moreover, it is found that when both types of nanomotors are exposed to a medium of similar pH found in the stomach, the surface-urease LBs lose activity and motion capabilities, while the encapsulated-urease LBs retain activity and mobility. The results for the protection enzyme activity through encapsulation within liposomes and in situ triggering of the motion of LBs upon exposure to bile salts may open new avenues for the use of liposome-based nanomotors in drug delivery, for example, in the gastrointestinal tract, where bile salts are naturally present in the intestine

    A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads

    Get PDF
    Metal-organic frameworks (MOFs) are among the most attractive porous materials currently available. However, one of the challenges precluding their industrial exploitation is the lack of methods for their continuous production. In this context, great advances have been enabled by recently discovered, novel continuous-fabrication methods such as mechanosynthesis, electrochemistry, continuous-flow synthesis and spray-drying. Herein we report the benefits of coupling two of these processes-spray-drying and continuous flow-for continuous synthesis of MOFs assembled from high-nuclearity secondary building units (SBUs). Using the resulting spray-drying continuous flow-Assisted synthesis, we have prepared numerous members of diverse MOF families, including the UiO-66, Fe-BTC/MIL-100 and [Ni(OH)(HO)(L)] (where L = 1H-pyrazole-4-carboxylic acid) series. Interestingly, all of these MOFs were automatically obtained as compact microspherical superstructures (beads). We anticipate that our strategy could be easily employed for synthesizing and shaping multivariate (MTV) MOFs

    Targeting and stimulation of the zebrafish (Danio rerio) innate immune system with LPS/dsRNA-loaded nanoliposomes

    Get PDF
    Herein we report the use of immunostimulant-loaded nanoliposomes (called NLcliposomes) as a strategy to protect fish against bacterial and/or viral infections. This work entailed developing a method for in vivo tracking of the liposomes administered to adult zebrafish that enables evaluation of their in vivo dynamics and characterisation of their tissue distribution. The NLc liposomes, which co-encapsulate poly(I:C) and LPS, accumulate in immune tissues and in immunologically relevant cells such as macrophages, as has been assessed in trout primary cell cultures. They protect zebrafish against otherwise lethal bacterial (Pseudomonas aeruginosa PAO1) and viral (Spring Viraemia of Carp Virus) infections regardless of whether they are administered by injection or by immersion, as demonstrated in a series of in vivo infection experiments with adult zebrafish. Importantly, protection was not achieved in fish that had been treated with empty liposomes or with a mixture of the free immunostimulants. Our findings indicate that stimulation of the innate immune system with co-encapsulated immunostimulants in nano-liposomes is a promising strategy to simultaneously improve the levels of protection against bacterial and viral infections in fish
    corecore