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Abstract

Development of novel systems of vaccine delivery is a growing demand of the aquaculture industry. Nano- and micro-
encapsulation systems are promising tools to achieve efficient vaccines against orphan vaccine fish diseases. In this context,
the use of liposomal based-nanocarriers has been poorly explored in fish; although liposomal nanocarriers have successfully
been used in other species. Here, we report a new ,125 nm-in-diameter unilamellar liposome-encapsulated
immunostimulant cocktail containing crude lipopolysaccharide (LPS) from E. coli and polyinosinic:polycytidylic acid [poly
(I:C)], a synthetic analog of dsRNA virus, aiming to be used as a non-specific vaccine nanocarrier in different fish species. This
liposomal carrier showed high encapsulation efficiencies and low toxicity not only in vitro using three different cellular
models but also in vivo using zebrafish embryos and larvae. We showed that such liposomal LPS-dsRNA cocktail is able to
enter into contact with zebrafish hepatocytes (ZFL cell line) and trout macrophage plasma membranes, being preferentially
internalized through caveolae-dependent endocytosis, although clathrin-mediated endocytosis in ZFL cells and
macropinocytocis in macrophages also contribute to liposome uptake. Importantly, we also demonstrated that this
liposomal LPS-dsRNA cocktail elicits a specific pro-inflammatory and anti-viral response in both zebrafish hepatocytes and
trout macrophages. The design of a unique delivery system with the ability to stimulate two potent innate immunity
pathways virtually present in all fish species represents a completely new approach in fish health.
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Introduction

The development of sustainable aquaculture, a strategic sector

to feed the ever-increasing human population [1], relies on disease

prevention through the implementation of preventive immuno-

stimulation and effective vaccination strategies [2]. With the

advent of liposomal vaccines, one can begin to conceive new non-

invasive, non-stressful and easy-to-manage methods for adminis-

tering immunostimulants and vaccines to a large number of

cultured fish at any time of their life cycle. Liposomes are hollow

spherical, safe and well-tolerated assemblies formed by a single

lipid bilayer or multiple concentric bilayers that can be tailored

(via selecting their composition, size, charge, etc.) to efficiently

entrap a wide variety of immunostimulants and vaccines [3]. This

encapsulation provides the obvious potential advantages of

increasing their stability and protection, thus enhancing their

immune response and disease protection, and opening up the

possibility to design more efficient immunostimulant-vaccine

cocktails. In addition, liposomes have been proven to act as

adjuvants to potentiate immune responses alone and to be rapidly

cleared from sites of administration, being preferentially distrib-

uted among macrophages [4]. Taking into account these excellent

properties and since liposomes can be stable in solution or be dried

[5], new opportunities will be available to aquaculture to study

such systems as new immunostimulant vehicles, which could be

administered either dissolved in water (immersion bath), by

injection, or orally via coated-food. Herein, we describe a novel

liposomal immunostimulant cocktail (hereafter called liposomal

IS-cocktail) composed of two immunostimulants: the bacterial

lipopolysaccharide (LPS) and the synthetic analog of dsRNA

viruses, poly (I:C). Both bacterial and viral compounds were

chosen to stimulate two potent innate immune pathways (TLR3

and TLR4 pathways) virtually present in all fish species [6]. The

molecular basis of the immunostimulant action lies in the

stimulation of innate immunity through the binding and activation

of innate pathogen recognition receptors (PRRs) located on

antigen-presenting cells (APCs) [7]. The principal APCs in fish are

macrophages, neutrophils, dendritic cells and B cells [8,9,10].

Upon immunization, APCs release a variety of cytokines and

chemokines regulating both innate and adaptive immunity [11].

Triggering combinations of PRRs on APCs with natural or

synthetic ligands can induce synergistic activation and production

of cytokines [12,13]. Indeed, LPS is present in the cell wall of G

negative bacteria and signals through TLR4 in mammals. The

synthetic analog poly (I:C) (dsRNA) mimics RNA viruses and

signals through TLR3 located on endosomal membranes and
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through RIG-I and MDA5 located in the cytosol [11]. Teleost fish

can respond to dsRNA through TLR3, RIG-I and MDA5 [14]

and to crude LPS preparations probably through a sensing

mechanism not involving TLR4 [15–17], but involving peptido-

glycan recognition proteins and other intracellular receptors like

Nod-like receptor 3 [18]. LPS would be an excellent candidate for

immunostimulation purposes, but it has been scarcely used due to

its high endotoxic potential in mammals. Fish are much less

sensitive to LPS toxic effects [17] and, by encapsulating LPS, we

have assayed a simple way to stimulate fish innate immune system.

On the other hand, the addition of dsRNA to the nanocarrier

would also target anti-viral response pathways [13].

Prior to this study, some advances have been made on the

encapsulation of vaccines for fish vaccination and immunostim-

ulation. Some of these studies have suggested that microencapsu-

lated vaccines significantly enhance the protection and immune

response in various fish species [19–22]. Thus far, however, no one

has demonstrated the ability to simultaneously control the

encapsulation of several immunostimulants in unilamellar, bio-

compatible liposomes. Such capabilities would allow one to

construct much more sophisticated and efficient liposomal

immunostimulants for aquaculture. The approach used herein

relies on the ability of using the surface charge of liposomes, which

can be tailored by properly selecting the lipid head-groups, to

optimize the encapsulation of both negatively charged LPS and

dsRNA. In such design, PEGylated lipids have also been used in

liposomal immunostimulant formulations to control the unilamel-

larity of liposomes and to prolong the plasma half-life of the

immunostimulants [23,24]. This study provides evidence that the

optimized multifunctional liposomal IS-cocktail induces a concur-

rent anti-viral and pro-inflammatory state in zebrafish hepatocytes

and trout macrophages. Moreover, insights into the mechanisms

controlling the cell interaction and metabolism of the liposomes

have demonstrated the possibility to target plasmatic membrane

and intracellular compartments essential to achieve an optimum

immune response. Our findings have also shown that the designed

liposome formulations are safe at therapeutic doses and could be

used in future fish health applications.

Materials and Methods

Materials
1,2-didodecanoyl-sn-glycero-3-phosphocholine (DLPC), 1,2-

dioleoyl-sn-glycero-3-phosphoric acid monosodium salt (DOPA),

Cholesterol (Chol), 3b-N-(di-methyl-amino-ethyl)carbamate hy-

drochloride (Cholesteryl), Cholesterol-PEG600 (Chol-PEG), lipo-

polysaccharides (LPS) from E. coli 0111:B4, TriReagent, insulin,

EGF, chloroquine and all endocytosis inhibitors were purchased

from Sigma-Aldrich. MarinaBlue-DHPE, fluorescein-DHPE,

LPS-AlexaFluor594, antibiotic/antimycotic solution, TrypLE Ex-

press, Cell Mask Deep Red, Hoechst 33342 and Superscript III

reverse transcriptase were purchased from Invitrogen. Poly(I:C)

High Molecular Weight, poly (I:C)-Fluorescein and Primocin were

purchased from InvivoGen, whereas ZFL cells were purchased

from ATCC. Oligo-dT15, GelGreen and SYBR Green I were

purchased from Promega, Biotium and Bio-Rad, respectively.

Ethics statement
All experimental procedures involving rainbow trout (Onchor-

ynchus mykiss) and zebrafish (Danio rerio) were submitted and

authorized by the Ethics Committee of the Autonomous

University of Barcelona (CEEH number 1582) who agree with

the International Guiding Principles for Research Involving

Animals (EU 2010/63).

Preparation and characterization of liposomes of
immunoliposomal formulations

Liposomal formulations were prepared by the thin film

hydratation method [25] with some modifications. Briefly, DOPA,

DLPC, Chol, Cholesteryl and Chol-PEG600 were dissolved in

chloroform solutions (100 mg/ml) and mixed at the desired molar

ratios (Table 1). The organic solvent was then evaporated by

rotary evaporation to obtain a lipid film. Later, the film was

hydrated with 2 ml of PBS at 0.5 mg/ml poly (I:C) or 1.5 mg/ml

LPS. The encapsulation of poly (I:C) or LPS was done with an

immunostimulant:lipid ratio of 1:30 and 1:10, respectively. For the

preparation of the liposomes that contained a cocktail of

immunostimulants (hereafter called liposomal IS-cocktail), the

dry lipid film was hydrated with a solution containing 0.5 mg/ml

poly (I:C) and 1.0 mg/ml LPS in PBS. The co-encapsulation of

poly (I:C) and LPS was done with an immunostimulant:lipid ratio

of 1:30 and 1:15, respectively. The resulting lipid suspensions were

then vigorously shaken, and the liposomes obtained were

homogenized by means of an extruder (Lipex Biomembranes,

Canada) through 2 stacked polycarbonate membranes (200 nm

pore size, Avanti Polar Lipids) to finally obtain unilamellar

liposomes. In all cases, non-encapsulated immunostimulants were

removed from liposome preparations by ultracentrifugation at

110000 xg for 30 min at 10uC. Liposome integrity was checked by

DLS and Cryo-TEM. The particle size distribution and zeta

potential (f) of the final liposomal formulations were measured by

dynamic light scattering (DLS) using a Zetasizer Nano ZS

(Malvern Instruments, UK). The morphology was examined using

Cryo-Transmission electron microscopy (Cryo-TEM) in a JEOL-

JEM 1400 microscope (JEOL Ltd., Japan). Liposome stability was

followed (48 h at 28uC) by turbidity measurement in a Turbiscan

Lab Expert (Formulaction, France).

Encapsulation efficiency (EE)
Encapsulation efficiencies (EE) were calculated according to the

equation EE(%) = [(CIS,total-CIS,out)/CIS,total] x100, where CIS,total

is the initial immunostimulant concentration and CIS,out is the

concentration of non-encapsulated immunostimulant. To measure

the CIS,out, all liposome suspensions were centrifuged at 110000 xg

for 30 min at 10uC. Supernatant aliquots were taken to quantify

the concentration of non-encapsulated poly (I:C) and LPS by UV-

Vis spectroscopy using a Nanodrop ND-1000 (Thermo Scientific,

USA). Poly (I:C) was linearly detected in a range from 2.5 mg/ml

to 1 mg/ml (Abs at 250 nm, r2 = 0.999), whereas LPS was linearly

detected in a range from 4.0 mg/ml to 1 mg/ml (Abs at 269 nm,

r2 = 0.999). Liposomes that did not contain any encapsulated

immunostimulant were also ultracentrifuged and their supernatant

quantified (Abs at 220 nm) to verify that liposomes were properly

precipitated. To calculate the EE of the liposomal IS-cocktail, the

putative non-encapsulated immunostimulants in the supernatant

were separated by aqueous Gel Permeation Chromatography

(GPC, Ultrahydrogel 120, Waters, USA) and quantified by UV-

Vis spectroscopy, where poly (I:C) and LPS were linearly detected.

All experiments were done in triplicate.

Localization of liposome-encapsulated
immunostimulants

Evaluation of the distribution of encapsulated immunostimu-

lants in liposomes was done by confocal microscopy. The liposome

bilayer was labeled with MarinaBlue-DHPE (0.005 molar ratio).

Fluorescent LPS-AlexaFluor594 and poly (I:C)-Fluorescein were

individually or simultaneously encapsulated in liposomes and the

LPS-dsRNA Loaded Nanocarriers for Fish
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resulting liposomal formulations were examined using a Leica

TCS SP5 confocal microscope (Leica Microsystems, Germany).

Cell culture
Zebrafish ZFL cells (CRL-2643, ATCC) were cultured at 28uC,

5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM) 4.5 g/l

glucose, supplemented with 0.01 mg/ml insulin, 50 ng/ml EGF,

5% (v/v) of antibiotic/antimycotic solution, 10% (v/v) heat-

inactivated FBS and 0.5% (v/v) heat-inactivated trout serum (TS).

HepG2 cells were grown at 37uC, 5% CO2 in DMEM 4.5 g/l

glucose, supplemented with 5% (v/v) of antibiotic/antimycotic

solution and 10% (v/v) heat-inactivated FBS. Adherent trout

monocyte/macrophages were isolated as previously described [8].

Before treatments, cells were incubated 3 h in serum free medium.

Cytotoxicity assays
Two different cell viability assays (MTT and LDH) were

simultaneously performed using three cell lines (ZFL, HepG2 and

primary trout macrophages). Cells were seeded at 2.56105 cells/

well. The medium was removed and fresh non-supplemented

medium containing the liposome formulation at indicated

concentration was added, incubating the cells for 24 h. Lactate

dehydrogenase (Cytotoxicity Detection Kit LDH, Roche) activity

in the medium and MTT assay on the cells were performed. Cell

viability was expressed as a percentage of the control. All the

measurements were done in triplicate in 3 independent experi-

ments. Dose-response curves were fitted using a sigmoidal dose-

response curve model provided in the GraphPad Prism 5.0

(GraphPad software, USA). EC50 value was derived from these

fitted curves for single experiments. Differences among data were

analyzed using One-way ANOVA followed by Tukey’s post test

p,0.001.

Endocytosis analysis using flow cytometry
To visualize liposome endocytosis, DHPE-fluorescein was

incorporated at a 0.05 molar ratio into the liposomal IS-cocktail.

Labeled liposomal IS-cocktail was added to either ZFL or trout

macrophages to a final concentration of 750 mg/ml liposomal IS-

cocktail (containing 25 mg/ml poly (I:C) and 12.5 mg/ml LPS) and

incubated for selected times. After treatment, cells were cooled

down, washed 36with ice-cold PBS, trypsinized and centrifuged

at 200 xg for 5 min. Pellets were resuspended in ice-cold PBS for

FACS analysis using a BD FACSCanto cytometer (Becton

Dickinson, USA). Experiments were performed in triplicate

(10,000 events for each sample). The internalization of fluores-

cence was calculated as the mean fluorescence intensity (MFI). To

compare membrane-bound versus endocyted liposomes, the

medium was removed at different times (5, 15, 30 and 60 min),

and the cells were washed either with ice-cold PBS (pH = 7.4) or

with an ice-cold PBS-acetic acid (pH = 4.2) to remove the

liposomes attached to the membrane. The remaining (internal)

fluorescence of the cells was then analyzed using the PBS washed

cells as a total uptake. The uptake of liposomes at long incubation

times was also studied. When needed, cells were pretreated for 1 h

with 100 mM chloroquine. Then, fluorescent liposomes were

added and left to incubate 15 min for the ZFL cells and 30 min for

the trout macrophages. After 36 PBS washes, liposome-free

medium was added and cells were incubated for 1, 6 or 16 h in the

presence of chloroquine, when required. Finally, cells were

routinely treated for flow cytometry analysis. To determine the

liposome endocytosis pathways, the following inhibitors were used:

methyl-b-cyclodextrin (MbCD, 5 mM), 5-(N-Ethyl-N-isopropyl)a-

miloride (EIPA, 50 mM), sucrose (300 mM for ZFL, 150 mM for

trout macrophages) and wortmannin (W, 100 nM). The inhibitor’s

toxicity was assessed (Figure S4 in File S1) and working

concentrations were selected. Cells were pretreated for 1 h with

each inhibitor, and liposomes were added for 15 min (ZFL cells) or

30 min (trout macrophages). Finally, 1 h after adding the

liposomes, cells were analysed by flow cytometry.

Endocytosis analysis using confocal microscopy
Cells were seeded one day before the endocytosis experiments.

For short incubation times (from 30 min to 1.5 h), liposomal IS-

cocktail was added at 750 mg/ml liposomal IS-cocktail (containing

25 mg/ml poly (I:C) and 12.5 mg/ml LPS). For the 16 h

incubation time, liposomal IS-cocktail was added at 375 mg/ml

liposomal IS-cocktail (containing 12.5 mg/ml poly (I:C) and

6.25 mg/ml LPS). After 36 PBS washes, cells were stained with

CellMask and Hoechst and viewed under a Leica TCS SP5

confocal microscope (Leica Microsystems, Germany). Image

analysis was performed using Imaris software and z-stacks were

analyzed to visualize the particle contact sites and location.

Gene expression studies
Cells were stimulated for 16 h with 750 mg/ml of liposomal IS-

cocktail containing 25 mg/ml poly (I:C) and 12.5 mg/ml LPS and

375 mg/ml of liposomal IS-cocktail containing 12.5 mg/ml poly

(I:C) and 6.25 mg/ml LPS. Non-loaded liposomes and non-

encapsulated IS were used as controls. Total RNA from the ZFL

and trout macrophages cell cultures was extracted using TriR-

eagent following manufacturer’s instructions. The RNA quality

and concentration was assessed and cDNA was synthesized with

1.0 mg and 0.5 mg of total RNA for ZFL cells and macrophages,

respectively, using SuperScript III reverse transcriptase and oligo-

dT15 primer. PCR was carried out with 1 ml of cDNA as a

template with specific primers (Table S1 in File S1) and qPCR

was carried out using SYBR Green I mix, 500 nM of primers and

5 ml of cDNA. Samples from 3 independent experiments were run

in triplicate, and quantification was done according to Livak

method [26].

Table 1. Composition and characterization of non-loaded liposomal formulations.

Name Liposome composition f9 potential (mV) Size (nm)

NL1,n DLPC 50% - Cholesteryl 35% - Cholesterol 10% - PEG5% ++ 23.560.4 197.3654.7

NL2,n DLPC 50% - Cholesteryl 10% - Cholesterol 35% - PEG5% + 10.461.8 182.768.4

NL3,n DLPC 50% - Cholesteryl 45% - PEG5% 25.461.7 204.5621.6

NL4,n DLPC 40% - DOPA 10% - Cholesterol 45% - PEG5% 2 219.060.5 185.169.5

NL5,n DLPC 15% - DOPA 35% - Cholesterol 45% - PEG5% 2 2 230.962.5 161.1612.6

doi:10.1371/journal.pone.0076338.t001

LPS-dsRNA Loaded Nanocarriers for Fish
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TNFa secretion
Trout macrophages were incubated for 16 h with 375 mg/ml of

liposomal IS-cocktail (with 12.5 mg/ml poly (I:C) and 6.25 mg/ml

LPS). Non-loaded liposomes and free LPS were used as controls.

Supernatants were collected, centrifuged and precipitated with

25% trichloroacetic acid. TNFa secretion was assessed by Western

blot as previously described [16].

In vivo toxicological assays
Adult AB zebrafish (Danio rerio) were held in tanks with

recirculating water under a photoperiod of 14 h light/10 h dark

at 28uC. Embryos were obtained from random pair-wise mating

collected, rinsed and kept in E3 medium at 28uC. Viable embryos

and post-hatching larvae were plated in 96-well plates. Liposomal

IS-cocktail (liposome concentrations from 0.75 to 6 mg/ml) were

added to the wells (200 ml), and incubated for 120 h. The plate

evaporation rate was minimized as previously described [27].

Non-loaded liposomes and non-encapsulated immunostimulants

were used as controls, and 24 individuals for each condition were

used. Hatching rate, cumulative mortality and malformations of

the embryos were recorded every 24 h, and survival curves were

plotted using the Kaplan-Meier method and analysed using the

log-rank test. Larvae were also frozen at 280uC and total RNA

was isolated as indicated before for gene expression evaluation.

Results

Preparation and characterization of liposomal
formulations

Series of liposomal formulations with different lipid membrane

composition and net surface charges were prepared to determine

the optimal liposomal formulation to achieve the maximum

encapsulation efficiency of LPS and poly (I:C). Three lipid mixtures

were studied, NL1,n and NL2,n, formed by the cationic lipid mixture

of DLPC- Cholesteryl-Chol-PEG, NL3,n, constituted by the neutral

mixture DLPC-Chol, and NL4,n and NL5,n, formed by the anionic

lipid mixture DLPC-DOPA-Chol-PEG (Table 1). In all formula-

tions, small unilamellar vesicles (Figure 1A) were obtained with a

mean size ranging from 161.1612.6 nm to 204.5621.6 nm. In all

cases, a 5% of Chol-PEG600 was included to achieve uniform

samples. Encapsulation efficiencies of LPS or poly (I:C) in the

different NL1,n to NL5,n formulations were studied, showing that a

positively charged liposome surface, like in NL1,n

(+23.4760.40 mV) and NL2,n (+10.4361.77 mV), favors the

encapsulation of LPS and poly (I:C). In contrast, the encapsulation

efficiency of both LPS and poly (I:C) in liposomes decreased as the

surface charge became more negative like in NL5,n

(230.8762.53 mV), as previously described by Balazs et al. and

Nakhla et al. [28,29]. It has been suggested that the attractive

interaction between the negative charge of the immunostimulants

and the positive charge of the liposome surface results in near-

perfect conditions to achieve the highest encapsulation efficiencies

[30]. For example, the influence of these interactions to the

encapsulation of both LPS and poly (I:C) was further confirmed by a

decrease of the positive f9 potential value down to 24.3460,41 and

4.561.1 for both NL2,LPS and NL2,poly (I:C), respectively. The

maximum loading efficiencies for LPS were 49.665.9% and

66.060.1% for NL2,LPS and NL1,LPS, respectively. Interestingly,

loading efficiencies achieved for poly (I:C) were always higher, with

values of 95.061.4% and 91.260.1% for NL2, poly (I:C) and NL1, poly

(I:C), respectively (Table 2). To further characterize the physico-

chemical structure of such cationic liposomal formulations, we

encapsulated AlexaFluor594-labeled LPS (Figure 1C) and fluores-

cein-labeled poly (I:C) (Figure 1D) into Marina Blue-labeled

liposomes (Figure 1B). Confocal microscope images of non-

extruded liposomes demonstrated that both LPS and poly (I:C) were

incorporated into their lipidic bilayer. Figures 1C–D show the

spatial superimposition between fluorescence intensities of Alexa-

Fluor594-LPS and Marina Blue-liposomes (Figure 1C) as well as of

fluorescein-poly (I:C) and Marina Blue-liposomes (Figure 1D),

further confirming that both immunostimulants are localized in the

lipidic bilayer of cationic liposomes. Next, we investigated the

cytotoxicity of cationic liposomes without encapsulated immuno-

stimulants of both, NL1,n and NL2,n formulations, showing the

maximum loading efficiencies (Figure S1 in File S1). Both types of

liposomes were in vitro assayed on ZFL and HepG2 cell lines using

MTT and LDH assays. Interestingly, NL1,n and NL2,n liposomes

showed similar cytotoxicity activity in HepG2 cells (Figure S2 in
File S1). However, the more cationic liposomes (NL1,n) clearly

showed higher toxicity on ZFL cells (EC50 = 0.166 mg/ml) than the

less cationic one (NL2,n). Because of their similar loading efficiencies

but different cytotoxicity, the less toxic NL2,n formulation (DLPC

50%-Cholesteryl 10%-Chol 35%-Chol-PEG 5%) was finally chosen

as the ideal liposomal composition to co-encapsulate LPS and poly

(I:C) (Figure 1E). Using these conditions, the resulting liposomal

IS-cocktail (hereafter referred to as NLc formulation) was composed

of 125.866.6 nm-in-diameter liposomes that entrapped both LPS

and poly (I:C) with loading efficiencies of 22.362.1% and

99.660.1%, respectively. Therefore, the NLc formulation was

composed of a mixture of 15 mg/ml of liposomes containing

250 mg/ml and 500 mg/ml of LPS and poly I:C, respectively.

Importantly, after co-encapsulating LPS and poly (I:C), such

liposomes exhibited a slightly positive surface charge

(1.3763.58 mV), which was attributed to electrostatic interactions

between their positively charged lipidic bilayer and the negatively

charged immunostimulants. The occurrence of these attractive

interactions was corroborated by co-encapsulating AlexaFluor594-

labeled LPS and fluorescein-labeled poly (I:C) into cationic

liposomes, from which the localization of both immunostimulants

in the lipidic bilayer was observed (Figure 1F).

Evaluation of cell toxicity of liposomal NL2,LPS, NL2,poly (I:C)

and NLc formulations on zebrafish hepatocytes and trout
macrophages primary cultures

To fully characterize the safety of our formulations, we carried

out in vitro cytotoxic studies (Figure 2 and Figures S2, S3 in
File S1). The therapeutic immunostimulant doses were chosen

according to our previous results on LPS and poly (I:C) responses

in different fish species [16,31]. Based on these results, dose-

response experiments were conducted with NL2,n, NL2,LPS,

NL2,poly (I:C) and NLc in ZFL cells at the indicated concentrations

(Figure 2). None of the encapsulating formulations showed

toxicity at potential therapeutic doses in these cells. Moreover, free

LPS toxicity (50 mg/ml LPS, 51.8%617.9 viability and 25 mg/ml

LPS, 62.0%66.01 viability) was avoided by nanoencapsulation.

Also, poly (I:C) treatment prompted a slight decrease in viability

(50 mg/ml poly I:C, 80.32%67.01 viability) that was fully reverted

when this molecule was encapsulated (Figure 2B). Further, empty

NL2,n showed low toxicity but higher than NLc in all cases, which

can be attributed to changes suffered by the liposomes after the

encapsulation of LPS and poly (I:C) that further improve its

biocompatibility. The same results were obtained by using the

LDH assay (Figure S2 in File S1). Finally, toxicity studies were

also carried out using trout primary cell cultured APCs (Figure
S3 in File S1). In this cells, we observed low toxicity levels of NLc

formulations (20% over basal mortality), but did not observe a

LPS/poly (I:C) mediated toxicity at the indicated doses.

LPS-dsRNA Loaded Nanocarriers for Fish
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Endocytosis of NLc formulation by ZFL cells and trout
macrophages primary cultures

Since hepatocytes play a major role in physiological detoxifi-

cation processes and APCs are the key targets of our liposomes, we

next evaluated the liposome uptake in both systems using flow

cytometry and confocal microscopy. In ZFL cells, we observed a

rapid (5 min) and efficient liposome uptake (Figure 3A) that

reached a maximum in 1 h, and then started to decrease during

Figure 1. Characterization of liposomal formulations. (A) Representative Cryo-TEM image of DLPC/Chol/Cholesteryl/PEG600-Chol (5:3.5:1:0.5)
liposomes extruded through a 200 nm pore size membrane. (B) Confocal fluorescence image of a single liposome tagged on its lipid bilayer with
Marina Blue-DHPE (blue) and its corresponding fluorescence intensity profile. (C) Confocal fluorescence image of a single Marina Blue-labeled
liposome containing AlexaFluor594-labeled LPS (red) and their corresponding fluorescence intensity profiles. (D) Confocal fluorescence image of a
single Marina Blue-labeled liposome containing fluorescein-labeled poly (I:C) and their corresponding fluorescence intensity profiles. (E) Schematic
representation of the liposomal IS-cocktail (NLc) showing the presence of both encapsulated LPS (red) and poly (I:C) (green) in the lipidic bilayer of
liposomes. (F) Confocal fluorescence image of a single liposome containing both fluorescein-labeled poly (I:C) (green) and AlexaFluor594-labeled LPS
(red) and their corresponding fluorescence intensity profiles.
doi:10.1371/journal.pone.0076338.g001

LPS-dsRNA Loaded Nanocarriers for Fish
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the next 16 h, indicating that NLc were probably metabolized by

the endosomal/lysosomal system. Different studies have shown the

ability of cationic liposomes to deliver different compounds to

endosomal compartments [12,32]. To further explore this process,

we assayed the NLc endocytosis in the presence of chloroquine

(CQ), an inhibitor of lysosomal acidification, and we observed a

significant increase of fluorescence in the presence of CQ (Figure
S5A in File S1). This observation confirmed the occurrence of

NLc in the endosomal/lysosomal compartment (55.5360.83%

CQ-dependant endocytosis inhibition at 16 h). To discriminate

between membrane-bounded and endocytosed NLc, we measured

the total versus endocytosed fluorescence at different times,

observing that around 80% of total fluorescence signal corre-

sponded to endocytosed liposomes (Figure 3A) that accumulated

intracellularly forming cytosolic agglomerates of 1.1360.42 mm

mean size (Figure 3C). To distinguish between the various

mechanisms of endocytosis, a series of FITC-labelled NLc

liposome uptake assays were performed in the presence of

inhibitors (methyl-b-cyclodextrin, MbCD, sucrose, wortmannin

and EIPA) known to block a particular endocytosis pathway

(Figure 3B). Treatment of cells with MbCD, a caveolae-mediated

endocytosis inhibitor, led to a 6065.9% (p,0.001) decrease in

liposome uptake, whereas treatment with the macropinocytosis

inhibitors wortmannin and EIPA provided contradictory results.

While wortmannin inhibited uptake (1964%; p,0.01), EIPA, a

more specific macropinocytosis inhibitor, did not. The PI3K

inhibitors (e.g wortmannin) have been described to have pleiotro-

pic effects on endocytosis as they can block the internalization of

ligands of the clathrin- and caveolae- mediated pathways [33,34].

Thus, in ZFL cells, wortmannin could affect caveolae-mediated

endocytosis instead of macropinocytosis. Finally, treatment with

hypertonic medium (sucrose) led to a 1566% (p,0.05) inhibition,

indicating that clathrin-mediated endocytosis may also contribute

to NLc uptake. All these data suggested that NLc could be

endocytosed by ZFL cells mainly through the caveolae-dependent

endocytosis pathway, but clathrin-mediated endocytosis could also

be involved in liposome uptake.

The uptake in differentiated trout macrophages was also

evaluated. As shown in Figure 4, these cells were able to efficiently

endocyte NLc. We measured total versus intracellular fluorescence

by flow cytometry, and similarly to ZFL cells, macrophages were

able to internalize around 80% of fluorescent liposomes in 1 h

(Figure 4A). In contrast to ZFL cells, however, macrophages did

not metabolize liposomes in the endosomal/lysosomal compart-

ment since we could detect the same fluorescence levels even 24 h

later (Figure S5 in File S1). Note that the intracellular liposomes,

as in ZFL cells, were present primarily in the cytosol as

agglomerates (1.0960.37 mm), with no fluorescence in the nuclei

(Figure 4C). Again, we performed a series of liposome uptake

assays in the presence of inhibitors, and we observed that in

macrophages both MbCD and EIPA were able to inhibit the

endocytosis by 31.09614.52% (p,0.01) and 15.5761.72%

(p,0.05), respectively (Figure 4B). These results indicated that

caveolae-mediated endocytosis and macropinocytosis/phagocyto-

sis are the main endocytic pathways for liposome internalization in

trout macrophages.

The immunostimulatory effects of NLc formulation on
ZFL cells and trout macrophages

We examined the gene expression patterns in response to NLc

treatment in ZFL cells and trout macrophages (Figure 5A and
5B) by evaluating the expression of marker genes of pro-

inflammatory (TNFa and IL-6) and anti-viral responses (IFNW
and a, GIG2 and CCL4). Figure 5A shows that IFNW and GIG2

gene expression was significantly induced by the NLc formulation

at both doses, but we did not observe significant differences

between Dose 1 and 2. Importantly, IFNW (NLc Dose 1: 1162 -

fold change; p,0.01) and GIG2 (NLc Dose 1: 2250649 -fold

change; p,0.01) had higher expression levels in NLc formulation

than in non-loaded liposomes (NL2,n: 564 -fold change and

1761.5 -fold change, respectively). The chemokine CCL4, a

chemotactic cytokine that is induced in fish after viral infection

[35], was also efficiently induced after NLc treatment (Figure 5A).

We also observed that non-loaded liposomes (NL2,n) were still able

to induce low levels of gene expression (Figure 5A and 5B).

Several groups have indeed described that cationic liposomes have

an immunological adjuvant effect and that they are able to

regulate the transcription of several chemokines and cytokines

[36].

We also assessed the IFNa, IL-6 and TNFa expression levels in

trout macrophages (Figure 5B) to further evaluate the stimulatory

ability of NLc formulation. The IFN expression was significantly

induced after NLc Dose 1 and 2 treatment (6865 and 50610.5 -

fold change; p,0.001) as compared to non-loaded liposomes

(NL2,n; 9.263.8 -fold change; p,0.001) and to the free LPS/poly

(I:C) mixture (1264 -fold change; p,0.001). The pro-inflamma-

tory cytokines IL-6 and TNFa showed a slightly different pattern,

achieving good stimulation levels after NLc treatment with respect

to non-loaded liposomes, but similar or lower levels when

compared to the free-LPS/poly (I:C) mixture (Figure 5B).

Consistent with gene expression results, TNFa protein secretion

was strongly induced by NLc formulation, and most importantly, it

was undetectable after stimulation with non-loaded liposomes

NL2,n (Figure 5C). TNFa is one of the pivotal early response

cytokines that are secreted by macrophages and enters the

circulation to exert its systemic action [37].

In vivo biocompatibility of the NLc formulation
We conducted different dose-response survival experiments with

the NLc formulation and non-loaded liposomes NL2,n in pre- and

post-hatching larvae (Figure 6 and Figure S6 in File S1). A

NLc concentration range from an extremely high dose (NLc Dose

4 = 6 mg/ml) to a putative therapeutic dose (NLc Dose

1 = 0.75 mg/ml) was chosen. We did not observe significant

differences in survival curves obtained with pre-hatched larvae

Table 2. Efficiencies for the encapsulation of LPS and poly
(I:C).

Name EE LPS (%) EE poly (I:C) (%)

NL1,LPS 66.060.1

NL1, poly (I:C) 91.265.9

NL2,LPS 49.665.9

NL2, poly (I:C) 95.061.4

NL3,LPS 6.960.4

NL3, poly (I:C) 25.867.6

NL4,LPS 5.963.2

NL4, poly (I:C) 38.064.5

NL5,LPS 2.061.3

NL5, poly (I:C) 12.964.3

Encapsulation efficiencies (EE) for separately encapsulating an initial
concentration of 1.5 mg/ml of LPS and 0.5 mg/ml of poly (I:C) into 15 mg/ml of
the liposomal (NL1–5) formulation.
doi:10.1371/journal.pone.0076338.t002
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Figure 2. Cytotoxicity of NL2, LPS, NL2, poly (I:C), and NLc formulations in ZFL cells by MTT-based assay. (A) Viability of ZFL after 24 h
incubation with liposome-encapsulated LPS (NL2, LPS, green bars) at Dose 1 = 1 mg/ml liposome with 50 mg/ml LPS, Dose 2 = 0.5 mg/ml liposome
with 25 mg/ml LPS and Dose 3 = 0.20 mg/ml liposome with 10 mg/ml LPS. The white bar is the empty liposome control (NL2,n, 1 mg/ml liposome) and
the blue bar is the free LPS control (50 mg/ml). (B) Viability of ZFL after 24 h incubation the liposome-encapsulated poly (I:C) (NL2, poly (I:C), green bars)
at Dose 1 = 1.5 mg/ml liposome with 50 mg/ml poly (I:C), Dose 2 = 0.75 mg/ml liposome with 25 mg/ml poly (I:C) and Dose 3 = 0.375 mg/ml liposome
with 10 mg/ml poly (I:C). The white bar is the empty liposome control treatment (NL2,n, 1.5 mg/ml liposome) and the red bar is the non-encapsulated
poly (I:C) control (50 mg/ml). (C) Viability of ZFL cells after 24 h incubation with liposomal LPS-poly (I:C) cocktail (NLc, green bars) at Dose 1 = 1.5 mg/
ml liposome with 50 mg/ml poly (I:C) and 25 mg/ml LPS, Dose 2 = 0.75 mg/ml liposome with 25 mg/ml poly (I:C) and 12.5 mg/ml LPS and Dose
3 = 0.375 mg/ml liposome with 12.5 mg/ml poly (I:C) and 6.25 mg/ml LPS. The white bar is the empty liposome control treatment (NL2,n, 1.5 mg/ml
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incubated with NLc formulation at different doses (Figure 6A),

and only very high doses (NLc Dose 4) caused a significant increase

in mortality (100% at 72 h, p,0,0001). In contrast, high LPS

toxicity with free-LPS treatment both in pre- and post-hatching

larvae was observed (Figure S6A and S6B in File S1). A

moderate poly (I:C) toxicity in pre-hatching larvae (62.5%

mortality at 120 hpf; p,0.0001) versus control (36.12% mortality

at 120 hpf; p,0.0001) was also recorded. Therefore, and in

accordance with our previous in vitro toxicity studies (Figure 2),

the encapsulation of both immunostimulants avoided the embryo/

larvae mortality induced by free LPS and poly (I:C) (Figure 6A

and Figure S6 in File S1). Importantly, the embryos incubated

with NLc formulations were able to hatch and develop normally

until 120 h with no morphological defects. The survival curves in

post-hatching larvae incubated with these liposomal formulations

were substantially different (Figure 6B). In this case, non-loaded

liposomes (NL2,n Dose 2, 1.5 mg/ml) showed less toxicity than

that of the corresponding liposomal IS-cocktail (NLc Dose 2,

1.5 mg/ml liposomes, 50 mg/ml poly (I:C), 25 mg/ml LPS). In

addition, a dose-dependent toxicity for the NLc formulation after

48 h incubation was observed (Figure 6B). Analysis of gene

expression in NLc challenged larvae at 24, 48 and 72 h showed

liposome), the blue bar indicates the free LPS (25 mg/ml) and the red bar is the free (I:C) control (50 mg/ml). Non-treated cells were used as 100%
viability control (dotted line). Data represent means 6 SD of three independent experiments. Differences were analyzed using One-way ANOVA
followed by Tukey’s post test. **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0076338.g002

Figure 3. Endocytosis of NLc formulation by ZFL cells. (A) Flow cytometry time-course comparison of the membrane-bound (dark grey bar)
versus the endocyted liposomes (light grey bar) after incubation with NLc (750 mg/ml liposome, 25 mg/ml poly (I:C) and 12.5 mg/ml LPS) at the
indicated times. Data represent means 6 SD of three independent experiments. (B) Effect of chemical inhibitors on the endocytosis of the NLc

(750 mg/ml liposome, 25 mg/ml poly (I:C) and 12.5 mg/ml LPS). Inhibitors were used at the following concentrations: MbCD at 5 mM, EIPA at 50 mM,
sucrose at 300 mM and W at 100 nM. The uptake of cells without inhibitors (NLc bar) was used as 100% uptake control and non-treated cells were
used as control (control bar). Data represent means 6 SD of three independent experiments. Differences were analyzed using One-way ANOVA
followed by Tukey’s post test. *, p,0.05; **, p,0.01; ***, p,0.001. (C) Confocal microscopy images of fluorescent liposomes (NLc) endocyted by ZFL
cells. Cells were incubated for 30 min, 1.5 h and 16 h with NLc containing DHPE-Fluorescein (green) at a 0.05 molar ratio. Cell membranes were
stained with CellMask (red) and the nucleus was stained with Hoechst (blue).
doi:10.1371/journal.pone.0076338.g003
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expression of marker genes of pro-inflammatory (TNFa and

iNOS) and anti-viral responses (TLR3 and GIG2) (Figure S7 in
File S1), indicating a stimulation of the zebrafish larvae immune

system. Finally, DLS measurements done using NLc and NL2,n

formulations after 5 days incubation in E3 medium indicated a

good stability after the in vivo challenge. We also characterized the

NLc stability in in vivo experimental conditions by Turbiscan, and

we found that the NLc stability index was not significantly changed

after incubation in aquarium water or in E3 medium at 28uC for 2

days (stability indexes of 6.16 and 3.8, respectively). These data

further confirm that this liposomal IS-cocktail might be used for

future in vivo immunization in aquatic species.

Discussion

Vaccination and preventive immunostimulation has become the

principal prophylactic tool for disease control in aquaculture.

Some conventional vaccines made with inactivated bacteria (e.g.

Listonella anguillarum causing vibriosis) have achieved good protec-

tion levels against different fish infections [38]. However, most

diseases have no prevention tools, causing massive mortalities in

fish farms and generating important economic losses. It is still

unclear whether teleost fish have immunological memory but the

secondary humoral responses are by far less prominent than in

mammals [9,38]. Thus, the activation of the innate immune

system seems the most effective way for the initiation of an efficient

immune response in fish. The binding of antigens to the innate

pathogen receptors (PRRs) located on antigen-presenting cells

(APCs) is critical for developing an effective immune response.

Fish have a powerful innate immune system with a high molecular

diversity and complexity [39], being APCs (especially the

macrophages and dendritic cells) the main players of the innate

immune response and responsibles for the activation of adaptive

immunity [40]. With these specific premises, we have designed a

nanosized and non-toxic unilamellar liposomal formulation loaded

with TLR ligands (LPS and poly (I:C)) which was able to induce a

potent anti-viral and pro-inflammatory response in vitro and in vivo

in fish. As far as we know, this study is the first attempt to co-

encapsulate two model immunostimulants specifically designed to

target fish APCs in nanosized liposomes. To date, the unique

attempt to vaccinate fish using liposomes was done by Irie et al.,

who explored the use of microsized liposomes containing A.

salmonicida total extracts in carp [22]. Recently, Fredriksen et al.

have also shown that a combination of poly(lactic-co-glycolic acid)

Figure 4. Endocytosis of NLc formulation by trout macrophages. (A) Flow cytometry time-course comparison of the membrane-bound (dark
grey bar) versus the endocyted liposomes (light grey bar) after incubation with 750 mg/ml liposome-encapsulated 25 mg/ml poly (I:C) and 12.5 mg/ml
LPS at the indicated times. Data represent means 6 SD of three independent experiments. (B) Effect of chemical inhibitors on the endocytosis of NLc

(750 mg/ml liposome-encapsulated 25 mg/ml poly (I:C) and 12.5 mg/ml LPS) macrophages uptake. Inhibitors were used at the following
concentrations: MbCD at 5 mM, EIPA at 50 mM, sucrose at 150 mM and W at 100 nM. The uptake of cells not treated with inhibitors (NLc bar) was
used as 100% uptake control and non-treated cells were used as control (control bar). Data represent means 6 SD of 3 independent experiments.
Differences were analyzed using One-way ANOVA followed by Newman-Keuls post-test. *, p,0.05; **, p,0.01. (C) Confocal microscopy images of
fluorescent liposomes (NLc) endocyted by macrophages. Cells incubated 30 min, 1 h and 16 h with NLc containing DHPE-Fluorescein (green) at a 0.05
molar ratio. Cell membranes were stained with CellMask (red) and nucleus with Hoechst (blue).
doi:10.1371/journal.pone.0076338.g004
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microparticles loaded with b-glucan and human c-globulins were

able to target head kidney macrophages inducing an adaptive in

vivo immune response in salmon [41]. The LPS would be an

excellent candidate for immunostimulation purposes, but it has

been scarcely used due to its high endotoxic potential in mammals.

Fish are less sensitive to LPS toxic effects [17], and by

encapsulating LPS we have assayed a simple way to stimulate

fish innate immune system. On the other hand, we also target anti-

viral response pathways by adding dsRNA to the nanocarrier [13].

We have achieved high co-encapsulation efficiencies by using

liposomes with positive charge that can easily incorporate LPS and

poly (I:C) into the lipid bilayer and become neutral liposomes.

Although liposomes are in principle highly biocompatible, in vitro

toxicity of cationic liposomes has been reported by several groups

[42,43]. Thus, the observed charge neutralization has been an

advantage, making our formulation highly biocompatible. Another

advantage of this encapsulation system has been the elimination of

the free LPS associated toxicity observed in cells and larvae

(Figures 2 and 6). The LPS toxicity in vitro and in vivo has been

well documented in different vertebrates [15], and it has also been

demonstrated that encapsulation of LPS into liposomes decreased

its toxicity compared to the free form [29]. Our system minimizes

the detrimental effects of LPS while maintaining the immune

system activation potency.

By developing an in vitro endocytosis assay with fish cells, we

have also demonstrated that NLc liposomes contact with plasma

membranes and they are efficiently internalized by fish macro-

phages and zebrafish hepatocytes. Different studies in rodents and

humans have shown the ability of liposomes to deliver different

compounds to endosomal compartments [12,32]. The liposomes

developed in this study are 125 nm in size and its endocytosis is

inhibited mainly by MbCD and sucrose, which indicates that they

likely utilize the caveolae-mediated and the clathrin-mediated

endocytosis pathways to reach intracellular compartments. The

fact that the NLc liposomes accumulate in endosomal-lysosomal

compartments is a potential advantage since TLR3 is located in

endosomal membranes, and antigen processing for MHCII

presentation takes place in this compartment [3]. In addition, this

simple and active formulation designed for virtually all fish species

vaccination could be upgraded with specific pathogenic antigens of

any particular fish species.

In recent years, health and environmental safety of nanopar-

ticle-based therapeutics is a major concern for nanotechnology

that has to be carefully addressed [44]. The zebrafish embryos and

larvae have become a reference model for in vivo toxicological

studies due to its sensitivity and logistic convenience [45–47].

Zebrafish embryos are protected from the environment with the

chorion, a rigid but permeable membrane, which embryos lose

after 48 h (hatching) to become free-swimming larvae [48,49]. We

Figure 5. Analysis of gene expression in ZFL cell culture (A) and trout macrophage primary cell culture (B) after 16 h exposure to
liposomes. NL2,n = liposomes without immunostimulants (750 mg/ml), NLc Dose 1 = liposomes (750 mg/ml) containing 25 mg/ml poly (I:C) and
12.5 mg/ml LPS, NLc Dose 2 = liposomes (375 mg/ml) containing 12.5 mg/ml poly (I:C) and 6.25 mg/ml LPS, and LPS+poly (I:C) = stimulation control
(25 mg/ml poly (I:C), 12.5 mg/ml LPS). Elongation factor (EF1) was used as reference gene for ZFL cells and 18S for trout macrophages. IFN (w for ZFL
and a for macrophages), GIG2, CCL4, IL-6 and TNFa abundance was analyzed by Q-PCR (left panel) and conventional PCR (right panel). Data represent
means 6 SD of 3 independent experiments. Values with asterisk are statistically significant relative to the control (*, p,0.05; **, p,0.01; ***, p,0.001)
and values with letters (a,b) are statistically significant relative to NLc Dose 1 (a, p,0.001, b, p,0.05). Differences were analyzed using One-way ANOVA
and Tukey’s post test. (C) TNFa secretion from trout macrophages stimulated with liposomes for 16 h was assessed by Western blot. NLc Dose
2 = 375 mg/ml liposomes, 12.5 mg/ml poly (I:C), 6.25 mg/ml LPS, NL2,n = empty liposomes (375 mg/ml) and LPS = stimulation control (6.25 mg/ml). A
representative Western Blot is shown.
doi:10.1371/journal.pone.0076338.g005
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have taken advantage of the zebrafish model to demonstrate the

biocompatibility of our formulation at therapeutic doses and also

the ability of NLc to target innate immune system. The activation

of the innate immune system in trout macrophages and in

zebrafish larvae can be assessed by following the expression of key

cytokines [16,50]. Our study demonstrates that NLc formulation

stimulates the expression of several cytokines involved in anti-viral

and bacterial response, and in some cases, the treatment with

empty NL formulations also stimulates cytokine gene expression.

Importantly, TNFa secretion by trout macrophages is potently

and specifically stimulated by the liposomal IS-cocktail and not by

the non-loaded liposomes. However, several groups have indeed

described that cationic liposomes had an immunological adjuvant

effect and that they were able to regulate the transcription of

different chemokines and cytokines [36]. The induction of specific

immune responses with liposomal immunostimulant formulations

should be a promising strategy to improve disease control in fish

farms.

Supporting Information

File S1 Supporting information Table and Figures S1–
S7. Table S1. Rainbow trout (Oncorhynchus mykiss) and zebrafish

(Danio rerio) specific primers for PCR and Q-PCR. Figure S1.

Evaluation of toxicity of cationic liposomes without encapsulated

immunostimulants (NL1,n and NL2,n). Viability of ZFL cell line

was assessed with the MTT assay (A) or LDH assay (B) after a dose

response (0.1 mg/ml-10 mg/ml) with the two liposomal formula-

tions (NL1,n and NL2,n). Viability of HepG2 cell line was

determined with the MTT assay (C) and with the LDH assay

(D) after a dose response (0.1 mg/ml-10 mg/ml) with the two

liposomal formulations (NL1,n and NL2,n). Non-treated cells were

used as 100% viability control (dotted line) in the MTT assays and

non-treated cells were used as control of the basal death (dotted

Figure 6. In vivo NLc formulation toxicities. Survival of zebrafish embryos was recorded every 24 h until 120 h post fertilization (hpf) (A) and
72 h post-hatching (hph) (B) after exposure to four concentrations of liposomal IS cocktail (red, NLc Dose 1 = 750 mg/ml liposomes, 25 mg/ml poly (I:C)
and 12.5 mg/ml LPS; NLc Dose 2 = 1.5 mg/ml liposomes, 50 mg/ml poly (I:C) and 25 mg/ml LPS; NLc Dose 3 = 3 mg/ml liposomes, 100 mg/ml poly (I:C)
and 50 mg/ml LPS; NLc Dose 4 = 6 mg/ml liposomes, 200 mg/ml poly (I:C) and 100 mg/ml LPS). Liposomes without encapsulated immunostimulants
(grey, NL2,n Dose 2 = 1.5 mg/ml, NL2,n Dose 4 = 6 mg/ml) and non-treated embryos (blue) were used as controls. Non-encapsulated LPS (black, 25 mg/
ml and 100 mg/ml) was used as mortality control. Differences were analyzed using log rank test. *, p,0.05; **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0076338.g006
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line) in the LDH assays. Data represent means 6 SD of three

independent experiments. Differences were analyzed using One-

way ANOVA followed by Tukey’s post test. *, p,0.05; **, p,0.01;

***, p,0.001. Figure S2. Cytotoxicity of NLc formulation in ZFL

cells by LDH assay. (A) Viability of ZFL after 24 h incubation with

the liposome-encapsulated LPS (NL2, LPS, green bars) at Dose

1 = 1 mg/ml liposome with 50 mg/ml LPS, Dose 2 = 0.5 mg/ml

liposome with 25 mg/ml LPS and Dose 3 = 0.20 mg/ml liposome

with 10 mg/ml LPS. The white bar is the control treatment with

liposomes without encapsulated immunostimulants (NL2,n, 1 mg/

ml liposome) and the blue bar is the non-encapsulated LPS control

(50 mg/ml). (B) Viability of ZFL after 24 h incubation with the

liposome-encapsulated poly (I:C) (NL2, poly (I:C), green bars) at

Dose 1 = 1.5 mg/ml liposome with 50 mg/ml poly (I:C), Dose

2 = 0.75 mg/ml liposome with 25 mg/ml poly (I:C) and Dose

3 = 0.375 mg/ml liposome with 10 mg/ml poly (I:C). The white

bar is the control treatment with empty liposomes (NL2,n, 1.5 mg/

ml liposome) and the red bar is the non-encapsulated poly (I:C)

control (50 mg/ml). (C) Viability of ZFL cells after 24 h with

liposomal LPS-poly (I:C) cocktail (NLc, green bars) at Dose

1 = 1.5 mg/ml liposome with 50 mg/ml poly (I:C) and 25 mg/ml

LPS, Dose 2 = 0.75 mg/ml liposome with 25 mg/ml poly (I:C) and

12.5 mg/ml LPS and Dose 3 = 0.375 mg/ml liposome with

12.5 mg/ml poly (I:C) and 6.25 mg/ml LPS. The white bar is

the control treatment with empty liposomes (NL2,n, 1.5 mg/ml

liposome), the blue bar is the non-encapsulated LPS (25 mg/ml)

and the red bar represents the non-encapsulated poly (I:C) control

(50 mg/ml). Non-treated cells were used as 100% viability control

(dotted line). Data represent means 6 SD of three independent

experiments. Differences were analyzed using One-way ANOVA

followed by Tukey’s post test. *, p,0.05; ***, p,0.001. Figure
S3. In vitro cytotoxicity of NLc formulation in trout macrophages.

(A) The cytotoxicity of NLc was assessed by the LDH assay.

Viability of the trout macrophage primary cell culture after 24 h

incubation with NLc encapsulating both poly (I:C) and LPS (green

bars) at Dose 1 = 0.75 mg/ml liposome with 25 mg/ml poly (I:C)

and 12.5 mg/ml LPS and Dose 2 = 0.375 mg/ml liposome with

12.5 mg/ml poly (I:C) and 6.25 mg/ml LPS. The white bar is the

control treatment with non-encapsulating liposomes (NL2,n,

0.75 mg/ml liposome) and the grey bar is the non-encapsulated

poly (I:C) and LPS control (25 mg/ml and 12.5 mg/ml, respec-

tively). Basal dead cells of the non-treated cells were used as

control (dotted line). Data represent means 6 SD of 3 independent

experiments. Differences were analyzed using One-way ANOVA

followed by Tukey’s post test **, p,0.01. Figure S4. In vitro

cytotoxicity of endocytosis inhibitors. (A) Viability of ZFL cells

after 1 h exposure (16 h in the case of the chloroquine) to different

endocytosis inhibitors, assessed by the MTT assay. (B) Viability of

trout macrophages after 1 h exposure to different endocytosis

inhibitors, assessed by the MTT assay. Non-treated cells were used

as a 100% viability control (Control bar). Figure S5. Time-course

of NLc uptake in vitro. (A) Flow cytometry time course of NLc

uptake (grey bars, liposomes at 750 mg/ml containing 25 mg/ml

poly (I:C) and 12.5 mg/ml LPS) by ZFL cells. To study the

metabolization of NLc, ZFL cells were also pretreated for 1 h with

chloroquine at 100 mM (red bars). Then, liposomes were added

(750 mg/ml liposome containing 25 mg/ml poly (I:C) and 12.5 mg/

ml LPS), and left to incubate in the constant presence of

chloroquine. (B) Flow cytometry time course of NLc uptake (grey

bars, liposomes at 750 mg/ml containing 25 mg/ml poly (I:C) and

12.5 mg/ml LPS) by trout macrophages. Cells not exposed to NLc

were used as controls (white bars). Data represent means 6 SD of

triplicates of three independent experiments. Figure S6. In vivo

NLc toxicity assay controls. Survival of zebrafish embryos was

recorded every 24 h at 120 h post fertilization (hpf) (A) and 72 h

post hatching (hph) (B) after exposure to non-encapsulated LPS

(black, 25 mg/ml and 100 mg/ml), non-encapsulated poly (I:C)

(green, 50 mg/ml) and non-encapsulated LPS (25 mg/ml) and poly

(I:C) (50 mg/ml) in combination (orange). Non-treated embryos

(blue) were used as controls. Survival curves were analyzed using

the log rank test (n = 24 individual). Figure S7. Analysis of gene

expression in zebrafish larvae after time-course exposure to

liposome preparation. NL2,n = liposomes without encapsulated

immunostimulants (1.5 mg/ml), NLc = liposomes (1.5 mg/ml)

with 50 mg/ml poly (I:C) and 25 mg/ml LPS and LPS+poly

(I:C) = stimulation control (50 mg/ml poly (I:C), 25 mg/ml LPS).

Non-treated embryos were used as control (Ctrl). Elongation factor

(EF1) was the reference gene and TLR3, GIG2, TNFa and iNOS

mRNA abundance was analyzed by conventional PCR (right

panel). Representative images of three independent experiments

are shown.

(DOCX)

Acknowledgments

We thank Dr. Piferrer and Dr. Ribas for providing zebrafish AB embryos,

Dr. Itarte for providing HepG2 cell line and Carlos Carbonell for the

artwork in Figure 1F.

Author Contributions

Conceived and designed the experiments: AR MCS DM NR. Analyzed the

data: AR MCS SAM DM NR. Wrote the paper: AR MCS DM NR.

References

1. Khan MA, Khan S, Miyan K (2011) Aquaculture as a food production system: A

review. Biol Med 3: 291–302.

2. Evensen O (2009) Development in fish vaccinology with focus on delivery

methodologies, adjuvants and formulations. Options Mediterraneennes 86: 177–

186.

3. Nordly P, Madsen HB, Nielsen HM, Foged C (2009) Status and future prospects

of lipid-based particulate delivery systems as vaccine adjuvants and their

combination with immunostimulators. Expert Opin Drug Deliv 6: 657–672.

doi:10.1517/17425240903018863.

4. Watson DS, Endsley AN, Huang L (2012) Design considerations for liposomal

vaccines: Influence of formulation parameters on antibody and cell-mediated

immune responses to liposome associated antigens. Vaccine 30: 2256–2272.

doi:10.1016/j.vaccine.2012.01.070.

5. Wieber A, Selzer T, Kreuter J (2011) Characterisation and stability studies of a

hydrophilic decapeptide in different adjuvant drug delivery systems: A

comparative study of PLGA nanoparticles versus chitosan-dextran sulphate

microparticles versus DOTAP-liposomes. International Journal of Pharmaceu-

tics 421: 151–159. doi:10.1016/j.ijpharm.2011.09.011.

6. Zhu L-Y, Nie L, Zhu G, Xiang L-X, Shao J-Z (2013) Advances in research of

fish immune-relevant genes: A comparative overview of innate and adaptive

immunity in teleosts. Dev Comp Immunol 39: 39–62. doi:10.1016/

j.dci.2012.04.001.

7. Coffman RL, Sher A, Seder RA (2010) Vaccine adjuvants: putting innate

immunity to work. Immunity 33: 492–503. doi:10.1016/j.immuni.2010.10.002.

8. MacKenzie S, Planas JV, Goetz FW (2003) LPS-stimulated expression of a

tumor necrosis factor-alpha mRNA in primary trout monocytes and in vitro

differentiated macrophages. Dev Comp Immunol 27: 393–400. doi:10.1016/

S0145-305X(02)00135-0.

9. Whyte SK (2007) The innate immune response of finfish – A review of current

knowledge. Fish Shellfish Immunol 23: 1127–1151. doi:10.1016/

j.fsi.2007.06.005.

10. Bassity E, Clark TG (2012) Functional identification of dendritic cells in the

teleost model, rainbow trout (Oncorhynchus mykiss). PLoS ONE 7: e33196.

doi:10.1371/journal.pone.0033196.g008.

11. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation.

Cell 140: 805–820. doi:10.1016/j.cell.2010.01.022.

12. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, et al. (2011)

Programming the magnitude and persistence of antibody responses with innate

immunity. Nature 470: 543–547. doi:10.1038/nature09737.

LPS-dsRNA Loaded Nanocarriers for Fish

PLOS ONE | www.plosone.org 12 October 2013 | Volume 8 | Issue 10 | e76338



13. Thim HL, Iliev DB, Christie KE, Villoing S, McLoughlin MF, et al. (2012)

Immunoprotective activity of a Salmonid Alphavirus Vaccine: Comparison of
the immune responses induced by inactivated whole virus antigen formulations

based on CpG class B oligonucleotides and poly I:C alone or combined with an

oil adjuvant. Vaccine 30: 4828–4834. doi:10.1016/j.vaccine.2012.05.010.
14. Palti Y (2011) Toll-like receptors in bony fish: From genomics to function. Dev

Comp Immunol 35: 1263–1272. doi:10.1016/j.dci.2011.03.006.
15. Sepulcre MP, Alcaraz-Perez F, Lopez-Munoz A, Roca FJ, Meseguer J, et al.

(2009) Evolution of lipopolysaccharide (LPS) recognition and signaling: Fish

TLR4 does not recognize LPS and negatively regulates NF- B activation.
J Immunol 182: 1836–1845. doi:10.4049/jimmunol.0801755.

16. Roher N, Callol A, Planas JV, Goetz FW, Mackenzie SA (2011) Endotoxin
recognition in fish results in inflammatory cytokine secretion not gene

expression. Innate Immun 17: 16–28. doi:10.1177/1753425909348232.
17. Iliev DB, Roach JC, MacKenzie S, Planas JV, Goetz FW (2005) Endotoxin

recognition: In fish or not in fish ? FEBS Letters 579: 6519–6528. doi:10.1016/

j.febslet.2005.10.061.
18. Mackenzie SA, Roher N, Boltaña S, Goetz FW (2010) Peptidoglycan, not

endotoxin, is the key mediator of cytokine gene expression induced in rainbow
trout macrophages by crude LPS. Mol Immunol 47: 1450–1457. doi:10.1016/

j.molimm.2010.02.009.

19. Wang K-Y, Deng L-J, Huang J-L, Fu X, Chen D-F, et al. (2011) Study on the
immunogencity of poly(D,L-lactide-co- glycolide) (PLGA) microspheres-encap-

sulated vaccine preparation against Stenotrophomonas maltophilia infection in
channel catfish (Ictalurus punctatus). Afr J Biotech 10: 2751–2761. doi:10.5897/

AJB10.175.
20. Tian J, Yu J, Sun X (2008) Chitosan microspheres as candidate plasmid vaccine

carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Vet

Immunol Immunopathol 126: 220–229. doi:10.1016/j.vetimm.2008.07.002.
21. Rodrigues AP, Hirsch D, Figueiredo HCP, Logato PVR, Moraes ÂM (2006)
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