14,582 research outputs found
Paradigms for Parameterized Enumeration
The aim of the paper is to examine the computational complexity and
algorithmics of enumeration, the task to output all solutions of a given
problem, from the point of view of parameterized complexity. First we define
formally different notions of efficient enumeration in the context of
parameterized complexity. Second we show how different algorithmic paradigms
can be used in order to get parameter-efficient enumeration algorithms in a
number of examples. These paradigms use well-known principles from the design
of parameterized decision as well as enumeration techniques, like for instance
kernelization and self-reducibility. The concept of kernelization, in
particular, leads to a characterization of fixed-parameter tractable
enumeration problems.Comment: Accepted for MFCS 2013; long version of the pape
Fixed-parameter tractability of multicut parameterized by the size of the cutset
Given an undirected graph , a collection of
pairs of vertices, and an integer , the Edge Multicut problem ask if there
is a set of at most edges such that the removal of disconnects
every from the corresponding . Vertex Multicut is the analogous
problem where is a set of at most vertices. Our main result is that
both problems can be solved in time , i.e.,
fixed-parameter tractable parameterized by the size of the cutset in the
solution. By contrast, it is unlikely that an algorithm with running time of
the form exists for the directed version of the problem, as
we show it to be W[1]-hard parameterized by the size of the cutset
Time-reversible Born-Oppenheimer molecular dynamics
We present a time-reversible Born-Oppenheimer molecular dynamics scheme,
based on self-consistent Hartree-Fock or density functional theory, where both
the nuclear and the electronic degrees of freedom are propagated in time. We
show how a time-reversible adiabatic propagation of the electronic degrees of
freedom is possible despite the non-linearity and incompleteness of the
self-consistent field procedure. Time-reversal symmetry excludes a systematic
long-term energy drift for a microcanonical ensemble and the number of
self-consistency cycles can be kept low (often only 2-4 cycles per nuclear time
step) thanks to a good initial guess given by the adiabatic propagation of the
electronic degrees of freedom. The time-reversible Born-Oppenheimer molecular
dynamics scheme therefore combines a low computational cost with a physically
correct time-reversible representation of the dynamics, which preserves a
detailed balance between propagation forwards and backwards in time.Comment: 4 pages, 4 figure
Wavefunction extended Lagrangian Born-Oppenheimer molecular dynamics
Extended Lagrangian Born-Oppenheimer molecular dynamics [Niklasson, Phys.
Rev. Lett. 100 123004 (2008)] has been generalized to the propagation of the
electronic wavefunctions. The technique allows highly efficient first
principles molecular dynamics simulations using plane wave pseudopotential
electronic structure methods that are stable and energy conserving also under
incomplete and approximate self-consistency convergence. An implementation of
the method within the planewave basis set is presented and the accuracy and
efficiency is demonstrated both for semi-conductor and metallic materials.Comment: 6 pages, 3 figure
Chromosomal locations of twelve isozyme loci in Pisum sativum
Approximate chromosomal locations of 12 loci specifying electrophoretic enzyme variants are described in the garden pea (Pisum sativum L.). The enzyme loci are distributed on five of the seven chromosomes. The position of the loci on chromosomes 2 and 3 are such that most of the known markers on these chromosomes will exhibit linkage with at least one of the isozyme loci. Several of the loci studied code for enzymes that have isozymic counterparts in other compartments of the cell. In order to distinguish among the genes coding these isozymes we have added a suffix to the locus designation corresponding to the intracellular location of its produc
Parameterized Inapproximability of Target Set Selection and Generalizations
In this paper, we consider the Target Set Selection problem: given a graph
and a threshold value for any vertex of the graph, find a minimum
size vertex-subset to "activate" s.t. all the vertices of the graph are
activated at the end of the propagation process. A vertex is activated
during the propagation process if at least of its neighbors are
activated. This problem models several practical issues like faults in
distributed networks or word-to-mouth recommendations in social networks. We
show that for any functions and this problem cannot be approximated
within a factor of in time, unless FPT = W[P],
even for restricted thresholds (namely constant and majority thresholds). We
also study the cardinality constraint maximization and minimization versions of
the problem for which we prove similar hardness results
Comparison of effectiveness of heat and cold shocks applied in the induction of gynogenesis in Clarias gariepinus (Burchell)
An experiment was conducted to optimize the procedure of gynogenesis in African catfish, Clarias gariepinus by suppressing meiotic and mitotic cell divisions in fertilized eggs. Gynogensis was conducted by fertilizing normal eggs with UV-irradiated sperm followed by either heat or cold shocking Irradiation of spermatozoa was given for a duration of 1 min and the eggs were fertilized in vitro. Cold shock at a temperature of
3± 1°C for a duration of 30 and 60 min and heat shock at a temperature of 39± 1°C for a duration of 1 and 2 min was applied to induce diploidy. Higher percentage of hatching (68.66) was observed for meiotic gynogens at a shock temperature of 39± 1°C for a duration of 1 min, 5 min after fertilization (af). Higher percentage of mitotic gynogenetic induction (15.33) was observed at a temperature shock of 39± 1°C for a duration of 1 min, 30 min af
An isozyme marker for resistance to bean yellow mosaic virus in Pisum sativum
Linkage between Pgm-p, the locus specifying the plastid specific phosphoglucomutase, and Mo, the locus controlling resistance to bean yellow mosaic virus (BYMV), was investigated in the garden pea, Pisum sativum L. Both genes are known to be on chromosome 2 and exhibit linkage with two morphological marker loci, K and Wb. Our results indicate that the gene order is: Wb—K—Pgm-p—Mo. A map distance of approximately two recombinant units was determined for the Pgm-p—Mo linkage, suggesting that the enzyme locus can be used as a genetic marker for resistance to BYM
- …
