We present a time-reversible Born-Oppenheimer molecular dynamics scheme,
based on self-consistent Hartree-Fock or density functional theory, where both
the nuclear and the electronic degrees of freedom are propagated in time. We
show how a time-reversible adiabatic propagation of the electronic degrees of
freedom is possible despite the non-linearity and incompleteness of the
self-consistent field procedure. Time-reversal symmetry excludes a systematic
long-term energy drift for a microcanonical ensemble and the number of
self-consistency cycles can be kept low (often only 2-4 cycles per nuclear time
step) thanks to a good initial guess given by the adiabatic propagation of the
electronic degrees of freedom. The time-reversible Born-Oppenheimer molecular
dynamics scheme therefore combines a low computational cost with a physically
correct time-reversible representation of the dynamics, which preserves a
detailed balance between propagation forwards and backwards in time.Comment: 4 pages, 4 figure