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Abstract

Given an undirected graph G, a collection {(s1, t1), . . . , (sk, tk)} of pairs of vertices, and an
integer p, the Edge Multicut problem ask if there is a set S of at most p edges such that
the removal of S disconnects every si from the corresponding ti. Vertex Multicut is the
analogous problem where S is a set of at most p vertices. Our main result is that both problems
can be solved in time 2O(p3) ·nO(1), i.e., fixed-parameter tractable parameterized by the size p of
the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the
form f(p) · nO(1) exists for the directed version of the problem, as we show it to be W[1]-hard
parameterized by the size of the cutset.

1 Introduction

From the classical results of Ford and Fulkerson on minimum s − t cuts [16] to the more recent
O(
√

log n)-approximation algorithms for sparsest cut problems [35, 1, 14], the study of cut and
separation problems have a deep and rich theory. One well-studied problem in this area is the
Edge Multicut problem: given a graph G and pairs of vertices (s1, t1), . . . , (sk, tk), remove
a minimum set of edges such that every si is disconnected from its corresponding ti for every
1 ≤ i ≤ k. For k = 1, Edge Multicut is the classical s − t cut problem and can be solved
in polynomial time. For k = 2, Edge Multicut remains polynomial-time solvable [37], but it
becomes NP-hard for every fixed k ≥ 3 [11]. Edge Multicut can be approximated within a
factor of O(log k) in polynomial time [17] (even in the weighted case where the goal is to minimize
the total weight of the removed edges). However, under the Unique Games Conjecture of Khot
[24], no constant factor approximation is possible [7]. One can analogously define the Vertex
Multicut problem, where the task is to remove a minimum set of vertices. An easy reduction
shows that the vertex version is more general than the edge version.

Using brute force, one can decide in time nO(p) if a solution of size at most p exists. Our main
result is a more efficient exact algorithm for small values of p (the O∗ notation hides factors that
are polynomial in the input size):

Theorem 1.1. Given an instance of Vertex Multicut or Edge Multicut and an integer p,
one can find in time O∗(2O(p3)) a solution of size p, if such a solution exists.

That is, we prove that Vertex Multicut and Edge Multicut are fixed-parameter tractable
parameterized by the size p of the solution, resolving a very challenging open question in the area
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of parameterized complexity. (Recall that a problem is fixed-parameter tractable (FPT) with a
particular parameter p if it can be solved in time f(p) · nO(1), where f is an arbitrary computable
function depending only on p; see [13, 15, 30] for more background). The question was first asked
explicitly perhaps in [25]; it has been restated more recently as an open problem in e.g., [20, 8].
Our result shows in particular that multicut is polynomial-time solvable if the size of the optimum
solution is O( 3

√
log n) (where n is the input size).

One reason why multicut is a fundamental problem is that it is able to express several other
problems. It has been observed that a correlation clustering problem called Fuzzy Cluster
Editing can be reduced to (and in fact, equivalent with) Edge Multicut [3, 12, 2]. Our results
show that Fuzzy Cluster Editing is FPT parameterized by the editing cost, settling this open
problem discussed e.g., in [3].

Previous work. The fixed-parameter tractability of multicut and related problems has been
thoroughly investigated in the literature. Edge Multicut is NP-hard on trees, but it is known
to be FPT, parameterized by the maximum number p of edges that can be deleted, and admits
a polynomial kernel [5, 21]. Multicut problems were studied in [20] for certain restricted classes
of graphs. For general graphs, Vertex Multicut is FPT if both p and and the number of
terminal pairs k are chosen as parameters (i.e, the problem can be solved in time f(p, k) · nO(1)

[26, 36, 19] for some function f). The algorithm of Theorem 1.1 is superior to these result in the
sense that the running time depends polynomially on the number k of terminals pairs, and the
exponential dependence is restricted to the parameter p, the number of deletions. For the special
case of Multiway Cut (where terminals in a set T have to be pairwise separated form each other),
algorithms with running time of the form f(p) ·nO(1) were already known [26, 8, 19], but apparently
these algorithms do not generalize in an easy way to multicut. An FPT 2-approximation algorithm
was given in [27] for Edge Multicut: in time O∗(2O(p log p)), one can find a solution of size 2p if
a solution of size p exists. There is no obvious FPT algorithm for the problem even on bounded-
treewidth graphs, although one can obtain linear-time algorithms if the treewidth remains bounded
after adding an edge siti for each terminal pair [18, 31]. A PTAS is known for bounded-degree
graphs of bounded treewidth [6].

Our techniques. The first two steps of our algorithm follows [27]. We start by an opening
step that is fairly standard in the design of FPT algorithms. Instead of solving the original Vertex
Multicut problem, we solve the compression version of the problem, where the input contains
a solution W of size p + 1, and the task is to find a solution of size p (if exists). A standard
argument called iterative compression [34, 23] shows that if the compression problem is FPT,
then the original problem is FPT. Alternatively, we can use the polynomial-time approximation
algorithm of Gupta [22], which produces a solution W of size p2 if a solution of size p exists. In
this case, O(p2) iterations of the compression algorithm gives a solution of size p.

Next, as in [27], we try to reduce the compression problem to Almost 2SAT (delete k clauses
to make a 2-CNF formula satisfiable; also known as 2CNF Deletion), which is known to be FPT
[33, ?, 32]. However, our 2SAT formulation is very different from the one in [27]: we introduce a
single variable xv only for each vertex of G, while in [27] there is a variable xv,w for every vertex
v ∈ V (G) and vertex w ∈ W of the initial solution. This simpler reduction to Almost 2SAT is
correct only if the instance satisfies two quite special properties:

(1) every component of G \W is adjacent to at most two vertices of W (“has at most two legs”),
and

(2) there is a solution S such that every component of G \ S contains a vertex of W (“no vertex
is isolated from W after removing the solution S” or “no vertex is in the shadow of S”).

The main part of the paper is devoted to showing how these properties can be achieved. In order
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to achieve property (1), we show by an analysis of cuts and performing appropriate branching
steps that the set W can be extended in such a way that every component has at most two legs
(Section 4). To achieve property (2), we describe a nontrivial way of sampling random subset of
vertices such that if we remove this subset by a certain contraction operation (taking the torso
of the graph), then without changing the solution, we get rid of the parts not reachable from W
with some positive probability (Section 3). This random sampling uses the concept of “important
separators,” which was introduced in [26], and has been implicitly used in [9, 33, 8] in the design
of parameterized algorithms. We consider the random sampling of important separators the main
new technical idea of the paper. This technique and its generalizations have turned out to be useful
for other problems as well [?, ?, ?, ?, ?, ?, ?] and we expect it to have further application in the
future.

Directed graphs. Having resolved the fixed-parameter tractability of Vertex Multicut, the
next obvious question is what happens on directed graphs. Note that for directed graphs, the edge
and vertex versions are equivalent. In directed graphs, multicut becomes much harder to approx-
imate: there is no polynomial-time 2log

1−ε n-approximation for any ε > 0, unless NP ⊆ ZPP [10].
From the fixed-parameter tractability point of view, the directed version of the problem received
particular attention because Directed Feedback Vertex Set or DFVS (delete p vertices to
make the graph acyclic) can be reduced to Directed Multicut. The fixed-parameter tractability
of DFVS had been a longstanding open question in the area of parameterized complexity until it
was solved by Chen et al. [9] recently. The main idea that led to the solution is that DFVS can
be reduced to a variant (in fact, special case) of Directed Multicut called Skew Multicut,
where the task is to break every path from si to tj for every i > j. By showing that Skew Mul-
ticut is FPT parameterized by the size of the solution, Chen et al. [9] proved the fixed-parameter
tractability of DFVS. We show in Section 6 that, unlike Skew Multicut, the general Directed
Multicut problem is unlikely to be FPT.

Theorem 1.2. Directed Multicut is W[1]-hard parameterized by the size p of the solution.

Independent and followup work. A preliminary version of this paper appeared in [28]; the
current version contains essentially the same algorithm, but the terminology and organization of
Section 5 were significantly changed. Independently from our work, Bousquet et al. [4] presented in
the same volume a proof that Multicut is FPT parameterized by the size p of the solution. The
two algorithms have certain parts in common: both reduce the problem to the compression version
and both ensure that we have to deal with components having only two legs. However, the main
part of the two algorithms are substantially different: the current paper introduces the technique
of random sampling of important separators and uses it to reduce the problem to Almost 2SAT,
while Bousquet et al. [4] uses an approach based on a series of problem-specific reductions to reduce
the problem to 2SAT.

Subsequently to the first version of this paper, random sampling of important separators has
been used in several other applications. For undirected graphs, the technique was used by Lok-
shtanov and Ramanujan [?] to solve a parity version of Multiway Cut and by Chitnis et al. [?]
to solve a homomorphism problem generalizing certain deletion problems. For directed graphs,
even though Directed Multicut is W[1]-hard parameterized by p (see Section 6), Chitnis et
al. [?] proved that the special case Directed Multiway Cut (Given a set T of terminals, break
every directed path between two different terminals by removing at most p edges/vertices) is FPT
parameterized by p. A consequence of this result is that Directed Multicut with k = 2 is FPT
parameterized by p is FPT. Kratsch et al. [?] proved that Directed Multicut on directed acyclic
graphs (DAGs) is FPT with combined parameters k and p, and strenghed our hardness result by
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showing that Directed Multicut remains W[1]-hard parameterized by p even on DAGs. How-
ever, the complexity of Directed Multicut for k = 3 or with combined parameters k and p
remains an interesting open question.

Chitnis et al. [?] use the random sampling technique to show the fixed-parmeter tractability of
Directed Subset Feedback Vertex Set. They present an abstract framework in which this
technique can be used an improve the randomized selection and its analysis to obtain better success
probability and improved running time.

A very different application of the technique is given by Lokshtanov and Marx [?] in the context
of clustering problems. They study a family of clustering problems such as partitioning the vertices
of an undirected graph into clusters of size at most p such that at most q edges leave each cluster.
The problem boils down to being able to check whether a given vertex v is contained in such a
cluster. It turns out that the random sampling of important separators technique can be used to
show that this task (and therefore the original clustering problem) is FPT parameterized by q by
reducing it to a knapsack-like problem.

2 Framework: compression, shadows, legs

Let G be an undirected graph and let T = {(s1, t1), . . . , (sk, tk)} be a set of terminal pairs. We
say that a set S ⊆ V (G) of vertices is a multicut of (G,T) if there is no component1 of G \ S that
contains both si and ti for some 1 ≤ i ≤ k (note that it is allowed that S contains si or ti). The
central problem of the paper is the following:

Vertex Multicut
Input: A graph G, an integer p, and

a set T of pairs of vertices of G.
Output: A multicut of (G,T) of size at most p

or “NO” if no such multicut exists.

We prove the fixed-parameter tractability of Vertex Multicut by a series of reductions (see
Figure 1). First we argue that it is sufficient to solve an easier solution compression problem. Then
we present two reductions that modify the problem in such a way that it is sufficient to look for
solutions that are shadowless and we can assume that the instance is bipedal. The last step of the
proof is reducing this special variant of the problem to Almost 2SAT.

2.1 Compression

The first step in the proof of Theorem 1.1 is a standard technique in the design of parameterized
algorithms: we define and solve the compression problem, where it is assumed that the input
contains a feasible solution of size larger than p. As this technique is standard (and in particular,
we follow the approach of [27] for Edge Multicut), we keep this section short and informal.

Multicut Compression
Input: A graph G, an integer p,

a set T of pairs of vertices of G, and
a multicut W of (G,T).

Output: A multicut of (G,T) of size at most p,
or “NO” if no such multicut exists.

1Throughout this paper, when we refer to a component K of a graph, we consider the set of vertices of this
component. We omit saying “the set of vertices of” for the sake of brevity.
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Vertex Multicut

Multicut Compression∗

Multicut Compression∗

(shadowless solution)

Bipedal Multicut Compression∗

(shadowless solution)

Almost 2SAT

FPT

Iterative compression or approximation
(Section 2 )

Random sampling of important separators
(Section 3)

Branching on shattering sets
(Section 4)

Encoding into 2SAT
(Section 5)

Previous work
[33, ?, 32, ?]

Figure 1: The chain of reductions in the paper.
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Our main technical contribution is showing that Multicut Compression is FPT parameterized
by p and |W |.

Lemma 2.1. Multicut Compression can be solved in time O∗(2O((p+log |W |)3+|W | log |W |)).

Intuitively, it is clear that proving Lemma 2.1 could be easier than proving that Vertex
Multicut is FPT: the extra input W can give us useful structural information about the graph
(and as |W | appears in the running time, a large W is also helpful). What’s not obvious is
how solving Multicut Compression gives us any help in the solution of the original Vertex
Multicut problem. We sketch two methods.

Method 1. Let us use the polynomial-time approximation algorithm of Gupta [22] to find a
multicut W of size at most c ·OPT2, where c is a universal constant and OPT is the minimum size
of a multicut. If |W | ≥ c · p2, then we can safely answer “NO”, as there is no multicut of size at
most p. Otherwise, we run the algorithm of Lemma 2.1 for this set W to obtain a solution in time
O∗(2O((p+log |W |)3) = O∗(2O(p3)).

Method 2. The standard technique of iterative compression [34, 23] allows us to reduce
Vertex Multicut to at most |V (G)| instances of Multicut Compression with |W | = p + 1.
This technique was used for the 2-approximation of Edge Multicut in [27] and its application
is analogous in our case. Let (G,T, p) be an instance of Vertex Multicut. Suppose that
V (G) = {v1, . . . , vn}, let Gi = G[{v1, . . . , vi}], and let Ti be the subset of T containing the pairs
with both endpoints in Gi. One by one, we consider the instances (Gi,Ti, p) in ascending order of
i, and for each instance we find a solution Si of size at most p. We start with S0 = ∅. For some
i > 0, we compute Si provided that Si−1 is already known. Observe that Si−1 ∪ {vi} is a multicut
of size at most p + 1 for (Gi,Ti). Thus we can use the algorithm for Multicut Compression,
which either returns a multicut Si of (Gi,Ti) having size at most p or returns “NO”. In the first
case, we can continue the iteration with i+1. In the second case, we know that there is no multicut
of size p for (G,T) (as there is no such multicut even for (Gi,Ti)), and hence we can return “NO”.

Both methods result in O∗(2O(p3)) time algorithms. However, we feel it important to mention
both approaches, as improvements in Lemma 2.1 might have different effects on the two methods.

It will be convenient to work with a slightly modified version of the compression problem. We
say that a set S ⊆ V (G) is a multiway cut of W ⊆ V (G) if every component of G \ S contains at
most one vertex of W .

Multicut Compression∗

Input: A graph G, an integer p,
a set T of pairs of vertices of G, and
a multicut W of (G,T).

Output: A set S of size at most p such that

(1) S is multicut of (G,T),

(2) S ∩W = ∅, and

(3) S is a multiway cut of W

or “NO” if no such set S exists.

That is, Multicut Compression∗ has two additional constraints on the solution S. In Sections 4–
5, we prove that this problem is FPT:

Lemma 2.2. Multicut Compression∗ can be solved in time O∗(2O((p+log |W |)3)).
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Figure 2: The shadow of S consists of the three sets C1, C2, C3.

It is not difficult to reduce Multicut Compression to Multicut Compression∗ (an anal-
ogous reduction was done in [27] for the the edge case). We briefly sketch such a reduction. In
order to solve an instance (G,T,W, p) of Multicut Compression, we first guess the intersection
X of the multicut W given in the input and the solution S we are looking for. This guess results
in at most

∑p
i=1

(|W |
i

)
branches; in each branch, we remove the vertices of X from G and decrease

p by |X|. Thus in the following, we can restrict our attention to solutions disjoint from W . Next,
we branch on all possible partitions (W1, . . . ,Wt) of W , contract each Wi into a single vertex, and
solve Multicut Compression∗ on the resulting instance (G′,T′,W ′, p′). One of the partitions
(W1, . . . ,Wt) corresponds to the way the solution S partitions W into connected components, and
in this case S is a multiway cut of W ′ in G′. Thus if the original Multicut Compression instance
has a solution S, then it is a solution of one of the constructed Multicut Compression∗ instances.
Conversely, any solution of the constructed instances is a solution of the original instance. As the
number of partitions of W can be bounded by |W |O(|W |), the running time claimed in Lemma 2.1
follows from Lemma 2.2. Thus in the rest of the paper, it is sufficient to prove Lemma 2.2 to obtain
the main result, i.e., Theorem 1.1. Thus proving Lemma 2.2 implies the main result Theorem 1.1.

2.2 Shadows

An important step in our algorithm for Multicut (and in further applications of the randomized
sampling of important separators method) is to argue about solutions that are “shadowless” in the
sense defined below. Intuitively, we imagine the vertices in W as light sources, light spreads on the
edges, and S blocks the light (see Figure 2).

Definition 2.3. Let I = (G,T,W, p) be an instance of the Multicut Compression∗ problem,
and let S be a solution for I. The shadow of the set S is the set of vertices not reachable from any
vertex of W in G \ S. We say that the solution S is shadowless if the shadow is empty, i.e., G \ S
has exactly |W | components.

In Section 3, we present a randomized algorithm that modifies the instance such that if a
solution exists, then it makes the solution shadowless with positive probability. The algorithm
is based on a randomized contraction of sets defined by “important separators”; we review this
concept in Section 3.3. The algorithm can be derandomized to obtain the following lemma:

Lemma 2.4 (shadowless reduction). Given an instance I of the Multicut Compression∗ prob-
lem, we can construct in time O∗(2O(p3)) a set of t = 2O(p3) log n instances I1, . . . , It, each with
the same parameter p as I, such that

1. Any solution of Ii for any 1 ≤ i ≤ t is a solution of I.

2. If I has a solution, then Ii has a shadowless solution for at least one 1 ≤ i ≤ t.

Thus Lemma 2.4 allows us to reduce the Multicut Compression∗ problem into a variant
where the task is to find a shadowless solution.

2.3 Components and legs

In order to find a shadowless solution for a Multicut Compression∗ instance, the problem is
further transformed in Section 4 using the concept of legs.
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Figure 3: An instance with 7 components. The strong circles are the vertices of W , the numbers
show the number of legs for each component.

Definition 2.5. Given an instance (G,T,W, p) of Multicut Compression∗, we say that a
component C of G \W has `-legs if C is adjacent with ` vertices of W (see Figure 3). We say that
a Multicut Compression∗ instance is bipedal if every component of G\W has at most two legs;
Bipedal Multicut Compression∗ is the problem restricted to such instances.

The transformation presented in Section 4 reduces Multicut Compression∗ to a bounded
number of bipedal instances.

Lemma 2.6 (bipedal reduction). Given an instance I of the Multicut Compression∗ problem
with parameter p, in time O∗(2O((p+log |W |)3)) we can either solve this instance or construct a set of
t = 2O(p+log |W |)3 instances I1, . . . , It, of Bipedal Multicut Compression∗ each with parameter
at most p, such that

1. Any solution of Ii for any 1 ≤ i ≤ t is a solution of I.

2. If I has a shadowless solution, then Ii has a shadowless solution for at least one 1 ≤ i ≤ t.

Finally, in Section 5, we show how this solution can be found by a quite intuitive reduction to
an FPT problem Almost 2SAT.

Lemma 2.7. Let I = (G,T,W, p) be an instance of Bipedal Multicut Compression∗ that
has a shadowless solution S of size at most p. In time O∗(4p), we can find a (not necessarily
shadowless) solution S′.

Combining Lemmas 2.4–2.7 allows us to prove Lemma 2.2 and therefore to solve Vertex
Multicut.

Proof (of Lemma 2.2). Let us apply the Algorithm of Lemma 2.4 to an instance I = (G,T,W, p)
of Multicut Compression∗. This algorithm takes time O∗(2O(p3)) and produces t = 2O(p3) log n
instances Ii of the Multicut Compression∗ problem, each with parameter at most p, so that the
original instance I has a solution if and only if one of these t instances has a shadowless solution.
Moreover a (not necessarily shadowless) solution of any of these instances is also a solution of the
orginal instance.

Apply to each instance Ii the algorithm of Lemma 2.6, which in time O∗(2O((p+log |W |)3)) either
returns an answer or produces 2O((p+log |W |)3) instances Ii,j , each with parameter at most p, of the
Bipedal Multicut Compression∗ problem such that Ii has a shadowless solution if and only if
at least one Ii,j has a shadowless solution. Moreover a (not necessarily shadowless) solution of any
new instance Ii,j is also a solution of Ii.

Combining the above two steps, we conclude that in time O∗(2O((p+log |W |)3)) the algorithm pro-
duces 2O((p+log |W |)3) log n instances of the Bipedal Multicut Compression∗ problem such that
the original instance I has a solution if and only if at least one of the these 2O((p+log |W |)3) log n in-
stances has a shadowless solution. Moreover a (not necessarily shadowless) solution of any instance
Ii,j is also a solution of I.

Finally, we apply to each resulting instance Ii,j of the Bipedal Multicut Compression∗

problem the algorithm of Lemma 2.7. By the discussion above, if the algorithm returns a solution
for at least one of the instances, then this is a solution of the original instance I. If the algorithm
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Figure 4: The torso operation on the graph G with a set C of 6 vertices.

returns “NO” for all the instances, this means that no one of them has a shadowless solution. It
follows that the original instance does not have a solution either. Taking into account that the
algorithm of Lemma 2.7 takes time O∗(4p), processing of 2O((p+log |W |)3) log n instances takes time
O∗(2O((p+log |W |)3)). Consequently, the instance I of the Multicut Compression∗ problem can
be solved in time O∗(2O((p+log |W |)3)).

3 Making the solution shadowless

The purpose of this section is to reduce solving Multicut Compression∗ to finding a shadowless
solution. We present a randomized transformation that, given an instance having a solution,
modifies the instance in such a way that the new instance has a shadowless solution with probability
2−O(p3). More precisely:

Lemma 3.1. Given an instance I of the Multicut Compression∗ problem, we can construct in
time O∗(2O(p)) an instance I ′ with the same parameter p as I such that

1. Any solution of I ′ is a solution of I.

2. If I has a solution, then I ′ has a shadowless solution with probability 2−O(p3).

This means that if I has a solution, then by invoking Lemma 3.1 2O(p3) times, with constant
probability at least one of the instances has a shadowless solution. Thus if we are able to solve the
problem with the assumption that a shadowless solution exists, then this way we can get a solution
for I with constant probability. The main result of this section is a derandomized version of this
transformation (Lemma 2.4).

The main idea in the proof of Lemma 3.1 is to try to randomly guess a set Z whose removal does
not change the instance substantially, but makes the instance shadowless. Section 3.1 introduces
the torso operation, which is used to remove the set Z, and states what properties the set Z needs
to satisfy. The construction of Z is based on the observation that the solution can be characterized
by a “closest set” and we need to locate the boundary of such a set (Section 3.2). We develop
a randomized algorithm for this purpose in Sections 3.3–3.6. The algorithm uses the notion of
important separators; Section 3.3 reviews this concept and shows why it is relevant for our problem.
Sections 3.4–3.5 describe and analyze the randomized selection process. Section 3.6 shows how the
random selection can be derandomized to obtain the deterministic version, Lemma 2.4.

3.1 Torsos and shadowless solutions

The randomized transformation can be conveniently described using the operation of taking the
torso of a graph.

Definition 3.2. Let G be a graph and C ⊆ V (G). The graph torso(G,C) has vertex set C and
two vertices a, b ∈ C are adjacent if {a, b} ∈ E(G) or there is a path P in G connecting a and b
whose internal vertices are not in C.

In particular, every edge of G[C] is in torso(G,C). It is easy to show that this operation
preserves separation inside C:
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Proposition 3.3. Let C ⊆ V (G) be a set of vertices in G and let a, b ∈ C two vertices. A set
S ⊆ C separates vertices a and b in torso(G,C) if and only if S separates these vertices in G.

Proof. Let P be a path connecting a and b in G and suppose that P is disjoint from the set S.
The path P contains vertices from C and from V (G) \ C. If u, v ∈ C are two vertices such that
every vertex of P between u and v is from V (G) \ C, then by definition there is an edge uv in
torso(G,C). Using these edges, we can modify P to obtain a path P ′ that connects a and b in
torso(G,C) and avoids S.

Conversely, suppose that P is a path connecting a and b in the graph torso(G,C) and it avoids
S ⊆ C. If P uses an edge uv that is not present in G, then this means that there is a path
connecting u and v whose internal vertices are not in C. Using these paths, we can modify P to
obtain a path P ′ that uses only the edges of G. Since S ⊆ C, the new vertices on the path are not
in S, i.e., P ′ avoids S as well.

Let I = (G,W,T, p) be an arbitrary instance of Multicut Compression∗. Given a set
Z ⊆ V (G) \W of vertices, the reduced instance I/Z = (G′,W,T′, p) is defined the following way:

1. The graph G′ is torso(G,V (G) \ Z).

2. For every v ∈ V (G), let φ(v) = N(C) if v belongs to component C of G[Z], and let φ(v) = {v}
if v 6∈ Z. The set T′ is obtained by by replacing every pair (x, y) ∈ T with the set of pairs
{(x′, y′) | x′ ∈ φ(x), y′ ∈ φ(y)}.

The main observation is that if we perform this torso operation for a Z that is sufficiently large
to cover the shadow of a hypothetical solution S and sufficiently small to be disjoint from S, then
S becomes a shadowless solution of I/Z. Furthermore, the torso operation is “safe” in the sense
that it does not make the problem easier, i.e, does not create new solutions.

Lemma 3.4. Let I = (G,T,W, p) be an instance of Multicut Compression∗ and let Z ⊆
V (G) \W be a set of vertices.

(1) Every solution of I/Z is a solution of I.

(2) If I has a solution S such that Z covers the shadow and Z ∩ S = ∅, then S is a shadowless
solution of I/Z.

Proof. Let G and G′ = torso(G,V (G) \Z) be the graphs in instances I and I/Z, respectively. To
prove the first statement, we show that if S′ ⊆ V (G′) is a solution of I/Z, then S′ is a solution of I
as well. Suppose that some pair (x, y) of I is not separated by S′. Let P be a path in G \ S′ going
from x to y. Let x′ and y′ be the first and last vertex of P not in Z, respectively, and let P ′ be the
subpath of P from x′ to y′. (Note that P cannot be fully contained in Z, as it contains at least one
vertex of the multicut W .) By the way I/Z is defined, (x′, y′) is a pair in I/Z, hence S′ separates
x′ and y′ in G′ = torso(G,C). Using Prop. 3.3 with C = V (G) \ Z, we get that S′ separates x′

and y′ in G, which is in contradiction with the existence of the path P . A similar argument shows
that there is no path in G \ S′ that connects two vertices of W .

For the second statement, suppose that S is a solution of I with S ∩Z = ∅. Let us show that S
is a solution of I/Z as well. Suppose that S does not separate x′ and y′ in G′ for some pair (x′, y′)
of I/Z. Using Prop. 3.3 with C = V (G) \ Z, we get that S′ does not separate x′ and y′ in G, i.e.,
there is an x′ − y′ path P in G \ S. By the way the pairs in I/Z were defined, there is a pair (x, y)
of I and there is an x − x′ path P1 such that x′ is the only vertex of P1 not in Z, and there is a
y− y′ path P2 such that y′ is the only vertex of P2 not in Z. Clearly, these paths are disjoint form
S. Therefore, the concatenation of P1, P , P2 is an x − y path in G \ S, contradicting that S is a
solution of I.
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To see that S is shadowless in G′, consider a vertex v of G′ \S. As v 6∈ Z is not in the shadow of
the solution S of I, there is a path P in G\S going from v to a vertex w ∈W . Again by Prop. 3.3,
this means that there is a v−w path in G′ \ S as well, which means that v is not in the shadow of
the solution S of I ′.

3.2 Closest sets

Lemma 3.4 shows that in order to reduce the Multicut Compression∗ problem to finding a
shadowless solution, all we need is a set Z that covers the shadow of a hypothetical solution S, but
disjoint from S itself. It is not obvious how this observation is of any help: it seems that there is
no way of constructing such a set without actually knowing a solution S. Nevertheless, we present
a randomized procedure that constructs such a set with non-negligible probability.

The main idea of the randomized procedure is that a solution of a Multicut Compression∗

instance can be characterized by the set of vertices reachable from W , and we can assume that this
set has the property that it cannot be made smaller without increasing the size of the boundary.
The following definition formalizes this property:

Definition 3.5. Let G be an undirected graph and let W ⊆ V (G) be a subset of vertices. We say
that a set R ⊇W is a W -closest set if there is no R′ ⊂ R with R′ ⊇W and |N(R′)| ≤ |N(R)|.

The main technical idea of the paper is the following randomized procedure, which, in some
sense, finds the boundary of a closest set. Note that this statement could be of independent interest,
as it is about closest sets in general and contains nothing specific to multicut problems.

Theorem 3.6 (random sampling). There is a randomized algorithm RandomSet(G,W, p) that,
given a graph G, a set W ⊆ V (G), and an integer p, produces a set Z ⊆ V (G) \W such that the
following holds. For every W -closest set R with |N(R)| ≤ p, the probability that the following two
events both occur is at least 2−O(p3):

1. N(R) ∩ Z = ∅, and

2. V (G) \ (R ∪N(R)) ⊆ Z.

That is, the two events say that Z covers every vertex outside R ∪N(R) and may cover some
vertices inside R, but disjoint from N(R). To prove Theorem 3.6, we introduce the main new
technique of the paper: random sampling of important separators. In Section 3.3, we review
the notion of important separators. Section 3.4 contains a simplified proof of Theorem 3.6 (with

probability bound 2−2
O(p)

instead of 2−O(p3)). The full proof appears in Section 3.5. We show
below that Theorem 3.6 can be used to prove Lemma 3.1. Section 3.6 shows how to derandomize
Theorem 3.6, which immediately proves Lemma 2.4.

Proof (of Lemma 3.1). Let I = (G,W,T, p) be an instance of Multicut Compression∗. Let us
use the algorithm RandomSet(G,W, p) of Theorem 3.6 to obtain a set Z and let I ′ = I/Z. By
Lemma 3.4, every solution of I ′ is a solution of I as well.

Assume now that I has a solution S; let S be a solution such that |S| is minimum possible, and
among such solutions the set R of vertices reachable from W in G\S is as small as possible. Clearly,
N(R) ⊆ S. We claim that R is a W -closest set. Suppose that there is a set R′ ⊂ R containing
W such that |N(R′)| ≤ |N(R)|. Let S′ = N(R′), we have that |S′| ≤ |S|. We claim that S′ is a
solution, contradicting the minimality of S. Suppose that there is a path P in G\S′ connecting the
two terminals in a pair (x, y) ∈ T or two vertices of W . In both cases, P has to go through a vertex
of W (here we use that the definition of Multicut Compression∗ requires that W is a multicut).
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Figure 5: Set S1 is the unique minimum X − Y separator and therefore it is an important X − Y
separator. Set S2 is not an important X − Y separator, as |S2| = |S3| and a superset of vertices
is reachable from X in G \ S3 compared to G \ S2. Sets S3 and S4 are both important X − Y
separators.

Therefore, P is fully contained in R′ ⊂ R, which implies that it is disjoint from N(R) ⊆ S, i.e.,
S is not a solution. Thus S′ is indeed a solution with |S′| ≤ |S| and |R′| < |R|, contradicting the
choice of the solution S. This contradiction proves our claim that R is a W -closest set. The same
argument shows that N(R) is a solution, hence S = N(R) has to hold.

As R is a W -closest set, the probability that both S ∩ Z = ∅ and V (G) \ (R ∪ S) ⊆ Z hold is
2−O(p3). The later inclusion is equivalent to saying that the shadow of the solution S is contained
in Z. Therefore, by Lemma 3.4, set S is a shadowless solution of instance I ′.

3.3 Important separators

The concept of important separators was introduced in [26] to deal with the multiway cut problem.

Definition 3.7. Let G be an undirected graph and let X,Y ⊆ V (G) be two disjoint sets. A set
S ⊆ V (G) of vertices is an X −Y separator if S is disjoint from X ∪Y and there is no component
K of G \ S with both K ∩X 6= ∅ and K ∩ Y 6= ∅.

In other words, G \ S contains no path between X and Y . To improve readability, we write
s−Y separator instead of {s}−Y separator if s is a single vertex. We emphasize the fact that, by
our definition, an X − Y separators is disjoint from X and Y .

Definition 3.8. Let X,Y ⊂ V (G) be disjoint sets of vertices, S ⊆ V (G) be an X − Y separator,
and let K be the union of every component of G\S intersecting X. We say that S is an important
X − Y separator if it is inclusionwise minimal and there is no X − Y separator S′ with |S′| ≤ |S|
such that K ′ ⊃ K, where K ′ is the union of every component of G \ S′ intersecting X.

See Figure 5 for illustration. Note that the order of X and Y matters: an important X − Y
separator is not necessarily an important Y −X separator. It is easy to see that if S is an important
X − Y separator, then S = N(R) for some set R with X ⊂ R and (R ∪ N(R)) ∩ Y = ∅: we can
define R to be the set of vertices reachable from X in G \ S. Observe that if R is defined this way,
then every component of G[R] contains at least one vertex of X. In particular, if X contains only
a single vertex, then we can assume that G[R] is connected.

A bound on the number of important separators was given in [26] (although the notation there
is slightly different). A better bound is implicit in [8]. For the convenience of the reader, we give a
self-contained proof of the following fact in the appendix.

Lemma 3.9. Let X,Y ⊆ V (G) be disjoint sets of vertices in a graph G. For every p ≥ 0, there
are at most 4p important X − Y separators of size at most p. Furthermore, we can enumerate all
these separators in time 4p · p · (|E(G)|+ |V (G)|).

Note that one can give an exponential lower bound on the number of important separators
as a function of p and in fact the bound 4p in Lemma 3.9 is asymptotically tight up to factors
polynomial in p.
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Figure 6: Proof of Lemma 3.10. Note that, in general, K ′ can intersect other components of
G \ (R ∪N(R)).

The following lemma connects closest sets and important separators by showing that the bound-
ary of a closest set is formed by important separators. Intuitively, every vertex v outside the closest
set R “sees” a part of the boundary N(R) that is an important v −W separator: otherwise, we
could “push” this part of the boundary away from v and towards W , contradicting the assumption
that R is a closest set.

Lemma 3.10 (pushing). Let G be an undirected graph, W a set of vertices, and R a W -closest
set. For every vertex v 6∈ R ∪N(R), there is an important v −W separator Sv ⊆ N(R).

Proof. Let v be an arbitrary vertex of G not in R∪N(R) and let K be the component of G\N(R)
containing v. As v 6∈ R ∪ N(R) and W ⊆ R, we have that K is disjoint from W . We show that
N(K) is an important v−W separator. First, we observe that N(K) is a minimal v−W separator:
we have N(K) ⊆ N(R), thus every vertex of N(K) is adjacent to both K and R. Thus, if N(K) is
not an important v−W separator, then there is a K ′ ⊃ K such that K ′∪N(K ′) is disjoint from W
and |N(K ′)| ≤ |N(K)|. We may assume that G[K ′] is connected. Let R′ := R\ (K ′∪N(K ′)). Now
N(R′) ⊆ (N(R) \N(K)) ∪N(K ′): it is clear that every neighbor of R′ is in N(R) ∪N(K ′) (as it
cannot be in K ′) and every vertex of N(K)\N(K ′) is fully contained in K ′. Thus |N(R′)| ≤ |N(R)|
follows from |N(K ′)| ≤ |N(K)|. Furthermore, the connectivity of G[K ′] and K ⊂ K ′ implies that
K ′ contains a vertex of N(K) ⊆ N(R) and therefore K ′ ∪ N(K ′) contains a vertex of R. This
means that R is a proper subset of R′ with |N(R′)| ≤ |N(R)|, contradicting the assumption that
R is a W -closest set.

3.4 Random sampling of important separators—simplified proof

In this section, we present a simpler version of the proof of Theorem 3.6, where the probability
of success is double exponentially small in p. This simpler proof highlights the main idea of the
randomized reduction. The full proof, which improves the probability to 2−O(p3) with additional
ideas, appears in Section 3.5.

By Lemma 3.9 we can enumerate every separator of size at most p that is an important v−W
separator for some v.

Definition 3.11. The set Ip contains a set S ⊆ V (G) \W if S is an important v −W separator
of size at most p for some vertex v ∈ V (G) \ (W ∪ S).

By Lemma 3.9, the size of Ip is at most 4p · |V (G)| and we can construct Ip in time O∗(4p).
Recall that the shadow of a set S is the set of vertices not reachable from W in G \ S. By

Lemma 3.10, every vertex of the shadow of N(R) is covered by the shadow of a member of Ip that is
a subset of N(R). This means that the shadow of 2p members of Ip fully cover the shadow of N(R).
This suggests that we may construct a set Z satisfying the conditions of Theorem 3.6 by guessing
these members of Ip and obtaining Z as the union of the shadows of the selected sets. However, in
general the size of Ip cannot be bounded as a function of p only. Thus complete enumeration of all
possible ways of selecting 2p members of Ip is not feasible. Instead, we randomly select a subset of
Ip and hope that it contains these at most 2p members and it does not contain any member of Ip
whose shadow intersects N(R).
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The probability of randomly selecting a member of Ip should not be too high, because we want
to avoid selecting any member whose shadow contains a vertex of N(R). We need a bound on the
number such members of Ip. Intuitively, the bound of Lemma 3.9 on the number of important
separators should imply that each vertex of N(R) is contained in the shadow of a bounded number
of members of Ip, but in order to make this claim precise, we need to consider a slightly different
notion of a shadow:

Definition 3.12. The exact shadow of a set S ⊆ V (G) \W contains those vertices v ∈ V (G) \
(W ∪ S) for which S is a minimal v −W separator.

For example, in Figure 2, set C2 is in the exact shadow of S, but C1 is not, as a 2-vertex subset
of S separates every vertex of C1 from W .

The following lemma is true only for exact shadows: the bound in (2) is not true with the
original definition of shadow.

Lemma 3.13. (1) For every S ∈ Ip, we have that v ∈ V (G) \ (W ∪ S) is in the exact shadow of
S if and only if S is an important v −W separator.

(2) Each vertex v ∈ V (G) \W is contained in the exact shadow of at most 4p members of Ip.

Proof. (1) By definition, if S is an important v−W separator, then S is a minimal v−W separator,
hence v is in the exact shadow of S. For the other direction, suppose that v is in the exact shadow
of some S ∈ Ip. By definition of Ip, there is a vertex u ∈ V (G) \ (W ∪ S) such that S is an
important u −W separator. If S is not an important v −W separator, then (as the definition of
exact shadow implies that S is a minimal v −W separator) there is a v −W separator S′ with
|S′| ≤ |S| and such that a superset of vertices is reachable from v in G \ S′ compared to G \ S.

We claim that S′ is a u−W separator as well. Suppose that there is a u−W path P in G \S′.
This path has to go through S \ S′; let s be the first vertex of S \ S′ on P when going from u to
W . Since S is a minimal v−W separator, s has a neighbor reachable from v in G \S and hence in
G \S′. Therefore, s 6∈ S′ is also reachable from v in G \S′. It follows that s is reachable from both
u and v in G \ S′, i.e., u and v are in the same component of G \ S′, contradicting the assumption
that S′ is a v −W separator.

Next we show that every vertex r reachable from u in G\S is reachable from u in G\S′. Let P
be an u−r path in G\S and suppose that it contains a vertex q ∈ S′ \S. As S′ is a minimal v−W
separator, there is a q −W path Q that intersects S′ only in q. The concatenation of the prefix of
P ending at q and Q is a u−W walk, hence Q has to contain a vertex q′ ∈ S. Vertex q cannot be
on P ; in particular, q′ 6= q. By the definition of Q, this vertex q′ has to be in S \ S′ and hence it is
reachable from v in G \ S′. However, the subpath of Q from q′ to W does not contain any vertex
of S′, meaning that v is reachable also from W in G \ S′, a contradiction. This shows that every
vertex reachable from u in G \ S remains reachable in G \ S′, contradicting the assumption that S
is an important u−W separator. Therefore, S is indeed an important v −W separator.

(2) By Lemma 3.9, there are at most 4p important v −W separators of size at most p, thus by
(1), vertex v can be contained in the exact shadows of at most that many members of Ip.

Combining Lemmas 3.10 and 3.13, we immediately have:

Proposition 3.14. Let R be a W -closest set and let S = N(R). Then every vertex v 6∈ R ∪N(R)
is in the exact shadow of an some Sv ∈ Ip with Sv ⊆ S.

We use Prop. 3.14 to bound the probability that the constructed set Z satisfies the second
condition of Theorem 3.6. We need the following simple observation to argue that the selection of
these sets does not interfere with the first condition of Theorem 3.6.
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Lemma 3.15. Let R be a W -closest set and let S = N(R) and S′ ⊆ S. Then the shadow of S′ is
disjoint from S.

Proof. Suppose that v ∈ S is in the shadow of S′ ⊆ S, i.e., v 6∈ S′ and S′ is a v −W separator.
As v ∈ N(R), vertex v has a neighbor r ∈ R. We can assume that every component of G[R]
contains a vertex of W : otherwise removing a component disjoint from W strictly decreases R
without increasing |N(R)|, contradicting the assumption that R is a W -closest set. This means
that there is a path from r to W fully contained in R. It follows that there is a path from v to W
fully contained in R ∪ {v}, which is disjoint from S′, contradicting the assumption that v is in the
shadow of S′.

In the simplified proof of Theorem 3.6, we select members of Ip uniformly at random and take
the union of their exact shadows. In light of Lemmas 3.10 and 3.13, there is a set of at most 2p

members of Ip that have to be selected and there is a set of at most N(R) · 4p members of Ip that
have to avoided in order for the random selection to be successful.

Simplified proof of Theorem 3.6. The algorithm RandomSet(G,W, p) first constructs the set Ip; by
Lemma 3.9, the size of Ip is O∗(4p) and can be constructed in time O∗(4p). Let I ′p be the subset of

Ip where each element from Ip occurs with probability 1
2 independently at random. Let Z be the

union of the exact shadows of every set in I ′p. We claim that the set Z satisfies the requirement of
the theorem.

Let R be a W -closest set and let S = N(R). Let X1, X2, . . . , Xd ∈ Ip be the members of Ip
that are fully contained in S. As |S| ≤ p, we have d ≤ 2p. By Lemma 3.15, we have that the exact
shadow of Xj is disjoint from S for every j ∈ [d]. Now consider the following events:

(E1) Z ∩ S = ∅
(E2) the exact shadow of Xj is a subset of Z for every j ∈ [d].

Note that by Prop. 3.14, event (E2) implies that the shadow of S is fully contained in Z, i.e.,

V (G) \ (R ∪N(R)) ⊆ Z. Our goal is to show that with probability 2−2
O(p)

, events (E1) and (E2)
both occur.

Let A = {X1, X2, . . . , Xd} and let B contain those sets in Ip whose exact shadows intersect S.
By Lemma 3.13, each vertex of S is contained in the exact shadow of at most 4p members of Ip.
Thus |B| ≤ |S| · 4p ≤ p · 4p. If no member of B is selected into I ′p, then event (E1) occurs. If every
member of A is selected I ′p, then event (E2) occurs. Thus the probability that both (E1) and (E2)
occur is bounded from below by the probability of the event that every element from A is selected
and no element from B is selected. Note that A and B are disjoint: A contains only sets whose
exact shadows are disjoint from S, while B contains only sets whose exact shadows intersect S.
Therefore, the two events are independent and the probability that both events occur is at least(1

2

)2p(
1− 1

2

)p·4p
= 2−2

O(p)

3.5 Random sampling of important separators—full proof

In order to optimize the success probability, we perform the randomized selection of important
separators in two phases: first we select some members of Ip and add new edges to the graph and
in the second phase we restrict our attention to members of Ip that induce cliques in the modified
graph. We observe that important separators that induce cliques are nested, hence we can get a
bound of p instead of 4p for the number of such separators.
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Lemma 3.16. For every vertex v ∈ V (G) \W , there are at most p important v−W separators of
size at most p inducing a clique.

Proof. Every minimal v − W separator arises as N(X) for some set X with v ∈ X and G[X]
connected. The bound follows from observing that important separators inducing cliques are nested.
That is, we show that if X1 and X2 are connected sets containing v such that N(X1) and N(X2)
are important v −W separators inducing cliques, then either X1 ⊂ X2 or X2 ⊂ X1.

Suppose that X1 \ X2 and X2 \ X1 are both nonempty. If X1 \ X2 6= ∅ and X1 is connected,
then there is a vertex x1 ∈ X1 ∩N(X2). As N(X2) is a clique, every vertex of N(X2) is adjacent
with x1, implying that N(X2) ⊆ X1 ∪ N(X1). If X2 \ X1 6= ∅, then a symmetrical argument
shows that N(X1) ⊆ X2 ∪ N(X2). We claim that N(X1 ∪ X2) ⊆ N(X1) ∩ N(X2) and hence
|N(X1 ∪ X2)| ≤ |N(X1)|, |N(X2)|; as X1 ∪ X2 ⊃ X1, X2, this would contradict the assumption
that X1 and X2 are important components. Consider a vertex u ∈ N(X1 ∪X2), which must have
a neighbor w ∈ X1 ∪ X2. If w ∈ X1 ∩ X2, then u ∈ N(X1) ∩ N(X2) and we are done. Suppose
without loss of generality that w ∈ X1 \ X2. Then u ∈ N(X1) ⊆ X2 ∪ N(X2), but u 6∈ X2 by
definition, hence u has to be in N(X2) as well.

Suppose now that X1, X2, . . . , Xt are connected sets containing v such that N(X1), N(X2),
. . . , N(Xt) are important v −W separators inducing cliques. We have shown that the Xi’s form
a chain, i.e., we can assume without loss of generality that X1 ⊂ X2 ⊂ · · · ⊂ Xt. This means
that there are at most p of them, as the definition of important separator implies that |N(X1)| <
|N(X2)| < · · · < |N(Xt)| has to hold.

By Lemma 3.13(1), we have the following the bound:

Lemma 3.17. Every vertex v ∈ V (G) \ W is contained in the exact shadow of at most p sets
X ∈ Ip such that G[N(X)] is a clique.

Full proof of Theorem 3.6. The randomized algorithm consists of two phases. For consistency of
notation, let G1 = G and Ip,1 = Ip. In the first phase, we select a subset of Ip and obtain G2 for
G1 by making the selected sets cliques. Let Ip,2 be defined as Ip,1, but for graph G2: S is in Ip,2
if it is an important v−W separator of size at most p for some vertex v ∈ V (G2) \ (W ∪ S) in G2.
In the second phase, we select a subset of Ip inducing cliques in G2 and obtain Z as the union of
the exact shadows of the selected sets.

Phase 1. In the first phase, we select a subset I ′p,1 ⊆ Ip,1 by putting every set of Ip,1 into I ′p,1
with probability p1 = 4−p independently at random. Then we make every set X ∈ I ′p,1 a clique; let
G2 be the graph obtained this way.

Let R be a W -closest set and let S = N(R). By Proposition 3.14, there exists a subcollection
A2 of Ip,1, all being subsets of S, such that V (G) \ (R ∪ S) is covered by the exact shadows of the
sets in A2. Let us estimate the probability that the events

(E1) Every S′ ∈ A2 induces a clique in G2.

(E2) Every S′ ∈ A2 has the same exact shadow in G1 and in G2.

(E3) Every S′ ∈ A2 is in Ip,2.

occur.
Let us make a subset A1 of A2 such that for every S2 ∈ A2 and x, y ∈ S2, there is a set S1 ∈ A1

with x, y ∈ S1. In other words, the sets in A1 cover every pair {x, y} of vertices covered by the sets
in A2. Since there are

(|S|
2

)
≤
(
p
2

)
such pairs, it is clear that there exists a collection A1 of size at

most
(
p
2

)
. Observe that, by Lemma 3.15, the shadow of every set in A1 is disjoint from S.
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Let B1 contain those members of Ip,1 whose exact shadows intersect S; by Lemma 3.13, we
have |B1| ≤ |S| · 4p ≤ p · 4p. We claim that if every member of A1 is in I ′p,1 and no member of B1

is in I ′p,1, then (E1–E3) occur.
Consider an S′ ∈ A2. Assuming that every member of A1 is in I ′p,1, the set G2[S

′] becomes a
clique. This shows (E1).

To show (E2), that is, that S′ ∈ A2 has the same exact shadows in G1 and G2, we show that a
subset S′ ⊆ S is a v −W separator for some vertex v in G1 if and only if it is in G2. This shows
that S′ is a minimal v−W separator in G1 if and only if it is in G2, implying the equalities of the
exact shadows. One direction is clear, as G1 is a subset of G2. For the other direction, suppose
that S′ is not a v −W separator in G2. Let K be the connected component of v in G1 \ S′; by
assumption K is disjoint from W . Then there have to be two vertices a ∈ K and b 6∈ K ∪ S′ that
are adjacent in G2 but not in G1. The reason why a and b are adjacent in G2 is that there is some
X ∈ I ′p,1 with a, b ∈ X. As we assumed that no member of B1 is in I ′p,1, this means that the
exact shadow of X is disjoint from S (and hence from S′). As X ∈ Ip,1, it is an important (hence
minimal) q −W separator for some vertex q in its exact shadow. This means that there are paths
from q to a and b in the exact shadow of X. Therefore, there is a path P from a to b in G1 whose
internal vertices are in the exact shadow of X, hence disjoint from S′. It follows that b is also in
the component K of v in G1 \ S′, a contradiction.

Finally, let us show (E3). As S′ ∈ Ip,1, it is an important v −W separator for some vertex
v. Again, let K be the connected component of v in G1 \ S′. By the previous paragraph, S′ is a
K −W separator in G2. This implies that S′ is an important v −W separator in G2 as well: if
there is a separator S′′ contradicting that S′ is an important v −W separator in G2, then S′′ is a
v−W separator in G1 as well (as G1 is a subgraph of G2) and at least one vertex of S′ is reachable
from v in G1 \S′′, which means that S′′ contradicts that S′ is an important v−W separator in G1.

We can conclude that the probability that (E1–E3) occur can be bounded from below by the
probability of the event that every set in A1 is selected and no set from B1 is selected. As the
sets A1 and B1 are disjoint (recall that the exact shadow of every member of A1 is disjoint from
S by Lemma 3.15 while the exact shadow of every member of B1 intersects S by definition), this
probability is at least

(1− 4−p)p·4
p · (4−p)p2 ≥ e−2p · 4−p3 = 2−O(p3)

(in the inequality, we use that 1 + x ≥ exp(x/(1 + x)) for every x > −1 and 1− 4−p ≥ 1/2).
Phase 2. I ′p,2 be a subset of Ip,2 where every X ∈ Ip,2 with G2[X] being a clique appears with

probability p2 = 1− 2−p independently at random (and if a set X ∈ Ip,2 does not induce a clique
in G2, then it is never selected). Let Z be the union of the exact shadows of the sets in I ′p,2.

If (E1–E3) occur, then every set in A2 is in Ip,2 and they induce cliques in G2. If additionally
the events

(E4) Z ∩ S = ∅, and

(E5) A2 ⊆ I ′p,2

occur, then every v 6∈ R ∪N(R) is in the exact shadow of some S′ ∈ I ′p,2 and v ∈ Z follows.
Let us estimate the probability that both (E4) and (E5) hold on condition that (E1–E3) hold.

Let B2 contain those members of Ip,2 (inducing cliques) whose exact shadow in G2 intersects S;
we have |B2| ≤ p|S| ≤ p2 (by Lemma 3.17, every vertex of S is contained in the exact shadow of
at most p members of Ip,2 inducing cliques in G2). If no member of B2 is selected, then no exact
shadow of a set of I ′p,2 contains a vertex of S, and hence Z ∩ S = ∅. Note that A2 and B2 are
disjoint: by (E2), every S′ ∈ A2 has the same exact shadow in G1 and G2, therefore the exact
shadow of S′ ∈ A2 is disjoint from S in G2 as well. Therefore, the probability that (E4) and (E5)
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hold can be bounded from below by the probability of the event that every member of A2 is selected
and no member of B2 is selected, which is at least

(2−p)p
2 · (1− 2−p)2

p ≥ 2−p
3 · e−22−O(p3)

(again, we use that 1 + x ≥ exp(x/(1 + x)) for every x > −1 and 1− 2−p ≥ 1/2).
Taking into account the probability of success in both phases, we get that for each W -closest

set R, the set Z satisfies the requirements with probability 2−O(p3).

3.6 Derandomization

By running 2O(p3) times the algorithm of Lemma 3.1, we get a collection of instances such that at
least one of them satisfies the requirements of Lemma 2.4 with arbitrary large constant probability.
To obtain a deterministic version of Lemma 2.4, we derandomize the algorithm of Theorem 3.6
using the standard technique of splitters.

Lemma 3.18. There is an algorithm DeterministicSets(G,W, p) that, given a graph G, a set W ⊆
V (G), and an integer p, produces t = 2O(p3) log2 |V (G)| subsets Z1, . . . , Zt of V (G) \W such that
the following holds. For every closest set R with |N(R)| ≤ p, there is at least one 1 ≤ i ≤ t with

1. N(R) ∩ Zi = ∅, and

2. V (G) \ (R ∪N(R)) ⊆ Zi.

Proof. An (n, r, r2)-splitter is a family of functions from [n] to [r2] such that for any subset X ⊆ [n]
with |X| = r, one of the functions in the family is injective on X. Naor, Schulman, and Srinivasan
[29] gave an explicit construction of an (n, r, r2)-splitter of size O(r6 log r log n).

Observe that in the first phase of the algorithm of Theorem 3.6, a random subset of a universe
Ip,1 of size n1 = |Ip,1| ≤ 4p · n is selected, where n = |V (G)|. There is a collection A1 ⊆ Ip,1 of
a1 ≤ p2 sets and a collection B1 ⊆ Ip,1 of b1 ≤ p · 4p sets such that if every set in A1 is selected
and no set in B1 is selected, then (E1–E3) hold. Instead of selecting a random subset, we try every
function f in an (n1, a1 + b1, (a1 + b1)

2)-splitter family and every subset F ⊆ [(a1 + b1)
2] of size a1

(there are
(
(a1+b1)2

a1

)
= 2O(p3)) such sets F ). For a particular choice of f and F , we select those sets

X ∈ Ip,1 for which f(X) ∈ F . By the definition of the splitter, there will be a function f that is
injective on A1 ∪ B1, and there is a subset F such that f(X) ∈ F for every A1 and f(X) 6∈ F for
every B1. For such an f and F , the selection will ensure that (E1–E3) hold.

In the second phase, we select a random subset of universe Ip,2 of size n2 ≤ pn, and there is a
collection A2 ⊆ Ip,2 of size a2 ≤ 2p and a collection B2 ⊆ Ip,2 of size b2 ≤ p2 such that if every set
in A2 is selected and no set in B2 is selected, then (E4) and (E5) hold. As in the first phase, we
can replace this random choice by enumerating the functions of an (n2, a2 + b2, (a2 + b2)

2)-splitter

and every subset F ⊆ [(a2 + b2)
2] of size b2 (there are

((a2+b2)2
b2

)
= 2O(p3) such sets F ). This time,

we select a set X ∈ Ip,2 if f(X) is not in F and it is clear that there is an f and F for which (E4)
and (E5) hold.

Let us bound the number of branches of the algorithm. In both phases, the size of the splitter
family is 2O(p) · log n and the there are 2O(p3) possible F . (Note that the splitter family can be
constructed in time polynomial in the size of the family.) Thus the algorithm produces 2O(p3) ·log2 n
sets.
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4 Reduction to the bipedal case

Let (G,T,W, p) be an instance of the Multicut Compression∗ problem. Let us call a component
of G\W having at least two legs a non-trivial component of G w.r.t. W (when the context is clear,
we will just refer to a non-trivial component). As the solution of Multicut Compression∗ has to
be a set S that is disjoint from W and a multiway cut of W , the number of non-trivial components
is a lower bound on the size of the solution.

We present an algorithm that either solves the given instance of the Multicut Compression∗

problem or produces a set of instances of the Bipedal Multicut Compression∗ problem whose
number is bounded by a function of p and such that if the considered instance of the Multicut
Compression∗ problem has a shadowless solution then one of the output instances of the Bipedal
Multicut Compression∗ problem has a solution. In addition, any (not necessarily shadowless)
solution of any of these output instances is a solution of the input instance of the Multicut
Compression∗ problem. The key ingredient of this algorithm is a procedure that, given an instance
of the Multicut Compression∗ problem where at least one component has more than 2 legs,
reduces this instance to a set of instances whose number is bounded by a function of p and such
that in each instance either the parameter is decreased or the number of non-trivial components is
increased.

The main idea for the branching is the following. Let B be a set of vertices in G\W and let S be
a hypothetical shadowless solution for Multicut Compression∗. We try to guess what happens
to each vertex of B in the solution S. It is possible that a vertex v ∈ B is in S; in this case, we
delete v from the instance and reduce the parameter. Otherwise, as the solution is shadowless, v
has to be in the same component as precisely one w ∈W (since S is a multiway cut of W ). In this
case, identifying v and w does not change the solution.

The following lemma formalizes these observations. Given a set B of vertices in G \W and a
function f : B → W , we denote by Gf the graph obtained by replacing each set {w} ∪ f−1(w)
with a single vertex (with removal of loops and multiple occurrences of edges). To simplify the
presentation, we will assume that this new vertex is also named w. We denote by Tf the set of
terminal pairs where each vertex v ∈ B is replaced by f(v), and we denote by T \ v the set where
every pair involving the vertex v is removed.

Lemma 4.1. Let K be a non-trivial component of G \W with set of legs Ŵ and let B ⊆ K. If
(G,T,W, p) has a shadowless solution, then one of the following statements is true.

• There is a v ∈ B such that the instance (G \ v,T \ v,W, p− 1) has a shadowless solution.

• There is a function f : B → Ŵ such that instance (Gf ,Tf ,W, p) has a shadowless solution.

Moreover, if any of the above instances has a solution, then (G,T,W, p) has a solution as well.

Proof. Assume that (G,T,W, p) has a shadowless solution S. Then it either intersects or does not
intersect with B. In the former case, we can specify a v ∈ S ∩B such that S \ {v} is a shadowless
solution of (G \ v,T \ v,W, p− 1). In the latter case, we can assign each v ∈ B precisely one vertex

f(v) of Ŵ such that vertex v belongs to the same component of G \ S as f(v). It is not hard to
see that S is a shadowless solution of (Gf ,Tf ,W, p).

For the second statement, we observe that the existence of a solution for any of the above
instances implies the existence of a solution for (G,T,W, p). This is certainly true in the first
case, where we delete a vertex and decrease the parameter by 1. In the second case, the statement
follows from the fact that replacing G with Gf by identifying vertices cannot make the problem
any easier.
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Lemma 4.1 determines a set of recursive calls to be applied in order to find a solution for the
given instance (G,T,W, p) of the Multicut Compression∗ problem, if a shadowless solution is
guaranteed to exist. It is clear that in each step, the number of directions we branch into is bounded
by a function of p, |B|, and |W | (observe that the number of functions f : B → Ŵ can be bounded

by |Ŵ ||B| ≤ |W ||B|). However, in order to ensure that the size of the search tree is bounded, we
need to ensure that the height of the search tree is bounded as well. This is obvious for the first
type of branches, as p decreases. The following property ensures that in every branch of the second
type, either the number of nontrivial components increases or we get an instance that trivially has
no solution.

Definition 4.2. Let K be a non-trivial component and let Ŵ ⊆ W be its set of legs. Let B be a
subset of K. We say that B is a shattering set if for any function f : B → Ŵ one of the following
statements is true regarding the instance (Gf ,Tf ,W, p) of the Multicut Compression∗.

• There is a w ∈ Ŵ such that there is no w−(Ŵ \{w}) separator of size at most p in Gf [K∪Ŵ ].

• The number of non-trivial components of Gf \W is greater than the number of non-trivial
components of G \W .

Note that the first possibility includes the case when Gf [Ŵ ] is not an independent set (recall
that an X − Y separator is disjoint from X ∪ Y by definition). In Section 4.1, we present a
polynomial-time algorithm for finding a shattering set.

Lemma 4.3. Given an instance (G,T,W, p) of the Multicut Compression∗ problem and a
component K of G\W with more than two legs, we can find a shattering set B ⊆ K of size at most
3p in polynomial time.

With Lemma 4.3 in mind, we are ready to prove Lemma 2.6, the main statement of this section.

Proof (of Lemma 2.6). The desired algorithm looks as follows. If the given instance (G,T,W, p) of
Multicut Compression∗ satisfies one of the following cases, then we can determine the answer
without any further branching:

• All the terminal pairs of T are separated: solve the multiway cut problem (G,W, p).

• The parameter is zero while there are unseparated terminals: this is a “NO” instance.

• There is a w ∈W such that there is no w − (W \ {w}) separator of size at most p in G: this
is a “NO” instance. The situation where W is not an independent set is a special subcase of
this case.

• The number of non-trivial components is greater than p: this is a “NO” instance since each
non-trivial component contributes at least one vertex to any solution.

• Every component has at most two legs: this is an instance of Bipedal Multicut Compression∗

problem and hence it is returned as the output.

Otherwise, we choose a component K of G \W having more than two legs, and use Lemma 4.3
to compute a shattering subset B of K of size at most 3p. We apply recursively the branches
specified in the statement of Lemma 4.1. If the “YES” answer is obtained on at least one of these
branches, then we return “YES”. If all the branches return “NO”, we return “NO”. According to
Lemma 4.1, the resulting answer is correct. Furthermore, assume that no one of branches produces
a “YES” or “NO” answer. Then, according to Lemma 4.1, if the parent instance has a shadowless
solution, then the instance on one of the branches has a shadowless solution. It is also not hard
to notice that any solution for a branch instance can be easily transformed into a solution of the
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parent instance. Applying this argument inductively, we conclude that the same relationship exists
between the original instance (G,T,W, p) and the Bipedal Multicut Compression∗ problem
instances at the leaves of the recursion tree.

To bound the number of leaves of the recursion tree, let us define κ to be the number of
nontrivial components. Observe that removing a vertex of V (G) \ W from G can decrease the
number of nontrivial components only by at most one. Thus inspection of Lemma 4.1 shows that
the measure 2p − κ strictly decreases in each branch. This means that the height of the search
tree is at most 2p. The number of branches in each step can be bounded by 3p+ |W |3p. Thus the
number of leaves of the recursion tree can be generously bounded by 2O((p+log |W |)3 . Taking into
account that the runtime per node of the recursion tree is polynomial, it follows that the runtime
of this algorithm is O∗(2O((p+log |W |)3)).

4.1 Finding a shattering set

We try to find a shattering set by selecting a set that separates one leg from all the other. If it is
not a shattering set, then we can characterize quite well how it can look like, and where should we
continue our search for a shattering set. Let us start with two simple lemmas.

Lemma 4.4. Let K be a non-trivial component with a set Ŵ of at least 3 legs. If G[M1] and G[M2]
are both connected for two disjoint sets M1,M2 ⊆ K, then at most one of M1 and M2 can be a
multiway cut of (G[K ∪ Ŵ ], Ŵ ).

Proof. Assume the opposite. Since no two vertices of Ŵ belong to the same component of G[K ∪
Ŵ ] \M1 and |Ŵ | ≥ 3, we can specify two vertices w′ and w′′ of Ŵ whose respective components

C ′ and C ′′ in G[K ∪ Ŵ ] \M1 are disjoint from the connected set M2. As G[K] is connected, there

is a w′ − w′′ path in G[K ∪ Ŵ ] that first uses vertices from C ′, then vertices from (the connected
set) M1, then vertices from C ′′. This path is disjoint from M2, contradicting the assumption that
M2 is a multiway cut.

Lemma 4.5. Let K be a non-trivial component with a set Ŵ of at least 3 legs. Let B ⊆ K be a
non-shattering set. Then there is exactly one connected component of G[K \B] that is a multiway

cut of (G[K ∪ Ŵ ], Ŵ ).

Proof. Let f : B → Ŵ be the mapping witnessing that B is not a shattering set. Let K ′ ⊆ K \B
be the unique non-trivial component of Gf \W that is a subset of K (witnessing B being a non-

shattering set). As every neighbor of K ′ is in B ∪ Ŵ , it is easy to see that K ′ is a component of

G[K \B] as well. Furthermore, we claim that K ′ is a multiway cut of (G[K ∪ Ŵ ], Ŵ ). Otherwise,

a path between vertices of Ŵ in G[K ∪ Ŵ ] \ K ′ would correspond to a walk of Gf between the
same vertices which belong to a non-trivial component that is a subset of K but different from K ′,
in contradiction to the definition of f . Finally, Lemma 4.4 implies that K ′ is the unique connected
component of G[K \B] being a multiway cut of G[K ∪ Ŵ ].

Let K be a non-trivial component with a set of legs Ŵ . Let M ⊆ K be a multiway cut of
(G[K ∪ Ŵ ], Ŵ ). We call N(M) (i.e., the open neighborhood of M) the boundary of M (which

possibly includes vertices of Ŵ ). For each w ∈ Ŵ , the image I(w) of w is the set of vertices of

N(M) reachable from w in G[K ∪ Ŵ ] \M (the image may include vertex w itself, but it cannot

include any other member of W ), see Figure 7. Note that I(w) is nonempty for any w ∈ Ŵ :

consider the first vertex of N(M) on a path from w to some other leg in Ŵ . Furthermore, as M
is a multiway cut, the sets I(w′) and I(w′′) are disjoint for w′ 6= w′′: otherwise, there would be a
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Figure 7: M is a multiway cut of the 4 legs {1, 2, 3, 4}. The dark region represents the boundary of
M . Observe that I({1, 2, 3, 4}) is a proper subset of the boundary: vertices of the boundary that
are adjacent only to C ′ and C ′′ are not in I(w) for any w ∈ {1, 2, 3, 4}.

w′−w′′ path disjoint from M . For X ⊆ Ŵ , we let I(X) =
⋃
w∈X I(w). Let us select a distinguished

leg w∗ ∈ Ŵ . We say that M is good if all of the following conditions are true.

• G[M ] is connected,

• N(M) = I(Ŵ ) or, in other words, each vertex of N(M) is reachable in G[K ∪ Ŵ ] \M from

some vertex of Ŵ , and

• |I(w∗) \ Ŵ | ≤ p and |I(Ŵ \ {w∗}) \ Ŵ | ≤ p holds (and hence we have |N(M) \ Ŵ | ≤ 2p).

Our goal is to obtain a shattering set from the boundary of a good multiway cut. The following
lemma gives a polynomial-time algorithm that either produces a shattering set, or finds a smaller
good multiway cut. Interestingly, the algorithm does not check that the returned set B is a
shattering using Definition 4.2 directly: this would require trying every function f : B → Ŵ .
Instead, the way the set B is produced guarantees that B is indeed a shattering set.

Lemma 4.6. Let K be a non-trivial component with a set Ŵ of at least 3 legs and a distinguished
leg w∗. Let M be a good multiway cut of (G[K∪Ŵ ], Ŵ ). Then there is a polynomial-time algorithm
that either returns a shattering set of size at most 3p or a good multiway cut M ′ ⊂M .

Proof. The desired algorithm first computes a smallest I(w∗)−I(Ŵ\{w∗}) separator S ofG[N(M)∪
M ] (recall that the images are nonempty). Observe that S is an inclusionwise minimal w∗−Ŵ \{w∗}
separator in G[K ∪ Ŵ ] (and hence nonempty). We consider three cases:

1. If |S| > p, then the algorithm returns B := N(M) \ Ŵ reporting it as a shattering set.

2. If |S| ≤ p and there is a unique connected component M ′ of G[K \ (N(M) ∪ S)] that is

a multiway cut of (G[K ∪ Ŵ ], Ŵ ), then the algorithm returns M ′ reporting it as a good
multiway cut.

3. If |S| ≤ p and there is no such unique M ′, then the algorithm returns B := (N(M) ∪ S) \ Ŵ
reporting it as a shattering set.

This algorithm clearly takes polynomial time. The remaining proof establishes correctness of the
algorithm in each of these three cases.

Case 1. The definition of good multiway cut implies that that B := N(M) \ Ŵ has size at

most 2p. We prove that B is a shattering set. Otherwise, let f : B → Ŵ be a function witnessing
that B it is not a shattering set. It is not hard to see that M is a connected component in Gf \W
whose set of legs is a subset of Ŵ . We consider three subcases and arrive to a contradiction in each
of them.

Case 1a. M is a trivial component of Gf \W . Let w be the only leg of M . Let w1 and w2 be
other two distinct legs of K in G that are different from w. It follows that f maps every vertex of
I(w1)∪ I(w2) to w implying that there is a w−w1 and a w−w2 path in Gf whose internal vertices

belong to two different components adjacent to w1 and w2 in G[K ∪ Ŵ ] \M . Thus Gf has at least
two non-trivial components that are subsets of K, in contradiction to the choice of f .
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Figure 8: The 3 subcases of Case 1 in Lemma 4.6 for a component with legs {w∗, 1, 2, 3}. Case 1a:
w is the only leg of M in Gf \W . The figure shows two paths in two distinct components connecting
w to another leg (assuming w 6∈ {1, 3}). Case 1b: f(v) = w for every v ∈ I(w). Case 1c: M is a
nontrivial component in Gf \W and f(v) = 3 for some v ∈ I(2); the figure shows a 2− 3 path.

Figure 9: The two possibilities in Case 2 of Lemma 4.6 (the set of legs is Ŵ = {w∗, 1, 2, 3}): either

(a) N(M ′) ⊆ IM (w∗) ∪ S or (b) N(M ′) ⊆ IM (Ŵ \ {w∗}) ∪ S holds.

Case 1b. M is a nontrivial component of Gf \W and f(v) = w for every v ∈ I(w) and w ∈ Ŵ
(i.e., each vertex on the boundary is mapped to its preimage). As the smallest I(w∗)−I(Ŵ \{w∗})
separator in G[N(M) ∪M ] is larger than p, G[M ∪ Ŵ ] does not have a w∗ − Ŵ \ {w∗} separator
of size at most p, in contradiction to f being a witnessing function.

Case 1c. M is a nontrivial component of Gf \ W and there are distinct w1, w2 ∈ Ŵ such
that f(v) = w2 for some v ∈ I(w1). By definition of I(w1), there is a w1 − v path in G whose
internal vertices are fully contained in K \M . Therefore, there is a w1 − w2 path in Gf whose
internal vertices are disjoint from M , implying that Gf has a nontrivial component that is a subset
of K, but distinct from the nontrivial component M . Thus the number of nontrivial components
increases, a contradiction.

Case 2. We show that M ′ ⊂ M and M ′ is a good multiway cut in this case. Let us show
M ′ ⊂M first. Clearly, M ′ 6= M , as M ′ is disjoint from the (nonempty) set S ⊆M . Thus M ′ 6⊂M
is only possible if M ′ is disjoint from M , but Lemma 4.4 implies that the two disjoint connected
sets M and M ′ cannot be both multiway cuts.

For clarity, from now on we use IM (w) and IM ′(w) for the image of w on the boundary of

M and M ′, respectively. Observe that IM (w) ∩ N(M ′) ⊆ IM ′(w) for every w ∈ Ŵ : for every
v ∈ IM (w) ∩ N(M ′), there is a w − v path disjoint from M , which is obviously disjoint from
M ′ ⊂ M as well, and then v ∈ N(M ′) implies v ∈ IM ′(w). We claim that either IM (w∗) or

IM (Ŵ \ {w∗}) is disjoint from N(M ′). Suppose that there are two vertices v1 ∈ IM (w∗) ∩N(M ′)

and v2 ∈ IM (Ŵ \ {w∗})∩N(M ′). Vertices v1 and v2 can be connected by a path P whose internal

vertices are in M ′ (hence disjoint from S), contradicting the fact that S is an IM (w∗)−IM (Ŵ \{w∗})
separator. Therefore, either N(M ′) ⊆ IM (w∗) ∪ S or N(M ′) ⊆ IM (Ŵ \ {w∗}) ∪ S holds. The two
possibilities are demonstrated in Figure 9.

To show that |IM ′(w∗) \ Ŵ | and |IM ′(Ŵ \ {w∗}) \ Ŵ | are both at most p, we argue as follows.

Suppose first that N(M ′) ⊆ IM (w∗)∪S. We show that IM ′(w
∗) ⊆ IM (w∗) and IM ′(Ŵ \{w∗}) ⊆ S

hold, proving a bound of p on both |IM ′(w∗) \ Ŵ | and |IM ′(Ŵ \ {w∗}) \ Ŵ |. Let C1 (resp., C2) be

the union of all those components of G[Ŵ ∪ (K \M ′)] that contain a vertex of w∗ (resp., a vertex

of Ŵ \ {w∗}). As M ′ is a multiway cut, C1 and C2 are disjoint. Now IM ′(w
∗) and IM ′(Ŵ \ {w∗})

are precisely the neighbors of M ′ in C1 and C2, respectively. We observe that IM (w∗) ⊆ C1: if
v ∈ IM (w∗) is not in C1, then every w∗ − v path has to go through M ′ ⊂ M , contradicting the
definition of IM (w∗). Thus N(M ′) ⊆ IM (w∗) ∪ S implies that every neighbor of M ′ in C2 is from

S (as it cannot be from IM (w∗) ⊆ C1), further implying IM ′(Ŵ \ {w∗}) ⊆ S. Next, we show that

S ⊆ C2. Suppose that there is a v ∈ S \ C2 and a w∗ − Ŵ \ {w∗} path P intersecting S only in v

(recall that S is a minimal w∗ − Ŵ \ {w∗} separator). However, when the path P enters C2 from

23



M ′, then, as we have seen, it enters a vertex of S ∩ C2 that is different from v, a contradiction.
Thus N(M ′) ⊆ IM (w∗)∪S implies that every neighbor of M ′ in C1 is from IM (w∗) (as it cannot be

from S ⊆ C2), further implying IM ′(w
∗) ⊆ IM (w∗). Finally, we can deduce that N(M ′) = IM ′(Ŵ ),

as required by the definition of good multiway cut: indeed, every vertex of N(M ′) ⊆ IM (w∗)∪S is

in C1∪C2, that is, either in IM ′(w
∗) or in IM ′(Ŵ \ {w∗}). Therefore, we have shown that M ′ ⊂M

is a good multiway cut.
A symmetrical argument (exchanging the role of w∗ and Ŵ \ {w∗}) shows that if N(M ′) ⊆

IM (Ŵ \{w∗})∪S, then IM ′(w
∗) ⊆ N(M ′) and IM ′(Ŵ \{w∗}), implying the bounds on |IM ′(w∗)\Ŵ |

and |IM ′(Ŵ \ {w∗}) \ Ŵ |. Thus in both cases, we proved that M ′ ⊂M is a good multiway cut.

Case 3. Assume now that the algorithm returns B := (S ∪ N(M)) \ Ŵ as a shattering set.
This happens because the number of components of G[K \ (N(M) ∪ S)] which are multiway cuts

of (G[K ∪ Ŵ ], Ŵ ) is not exactly one. According to Lemma 4.5, N(M) ∪ S is indeed a shattering
set in this case. Clearly, its size is at most 3p.

Lemma 4.3 follows by iterative application of Lemma 4.6.

Proof (of Lemma 4.3). It is not hard to see that K is a good multiway cut of (G[K ∪ Ŵ ], Ŵ ); in

particular, I(w) = {w} for every w ∈ Ŵ , and hence I(w∗) \ Ŵ = I(Ŵ \ {w∗}) = ∅. Let M0 = K.
Apply the algorithm of Lemma 4.6 to M0. The algorithm either returns a shattering set of size at
most 3p or a good multiway cut M1 ⊂M0. In the former case, we return the shattering set, in the
latter case, apply the algorithm of Lemma 4.6 to M1. Continuing this way, we obtain a sequence
M0 ⊃ M1 ⊃ . . . of good multiway cuts of decreasing size. It follows that after at most |V (G)|
iterative applications of the algorithm of Lemma 4.6, a shattering set of size at most 3p will be
returned.

5 Finding a shadowless solution by reduction to Almost 2SAT

The goal of this section is to show that we can solve Bipedal Multicut Compression∗ if we
know that there is at least one shadowless solution.

Let x1, . . . , xn be a set of variables; a literal is either a variable xi or its negation xi. Recall
that a 2CNF formula is a conjunction of clauses with at most two literals in each clause, e.g.,
(x1 ∨ x2) ∧ (x3) ∧ (x1 ∨ x4). The classical 2SAT problem asks if a given 2CNF formula has a
satisfying assignment. It is well-known that a satisfying assignment for a 2CNF formula can be
found in linear time (if exists). However, it is NP-hard to find an assignment that maximizes
the number of satisfied clauses, or equivalently, to find a minimum set of clauses whose removal
makes the formula satisfiable. Lokshtanov et al. [?] (improving earlier work [33, ?, 32]) gave an
O∗(2.3146k) time algorithm for the problem of deciding if a 2CNF formula can be made satisfiable
by the deletion of at most k clauses; they call this problem Almost 2SAT. We need a variant of
the result here, where instead of deleting at most k clauses, we are allowed to delete at most k
variables. An easy reduction (see Appendix ??) gives an algorithm for this variant. If φ is a 2CNF
formula and X is a set of variables, then we denote by φ \ X the formula obtained by removing
every clause containing a literal of a variable in X.

Theorem 5.1. Given a 2CNF formula φ and an integer k, in time O∗(2.3146k) we can either find
a set X of at most k variables such that φ \X is satisfiable, or correctly state that no such set X
exists.

It is not difficult to reduce finding a shadowless solution to the problem solved by Theorem 5.1.
For each vertex v of G\W , we introduce a variable whose value expresses which leg of the component
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containing v is reachable from v. This formulation cannot express that a vertex is separated from
both legs. However, as we assume that there is a shadowless solution, we do not have to worry
about such vertices.

Proof (of Lemma 2.7). We encode the Bipedal Multicut Compression∗ instance I = (G,T,W, p)
as a 2CNF formula φ the following way. For each component C of G \W having two legs, let `0(C)
and `1(C) be the two legs. If component C has only one leg, then let `0(C) be this leg, and let
`1(C) be undefined. For every vertex v ∈ C, let `0(v) = `0(C) and `1(v) = `1(C). We construct
a formula φ whose variables correspond to V (G) \W . The intended meaning of the variables is
that v has value b ∈ {0, 1} if v is in the same component as `b(v) after removing the solution. To
enforce this interpretation, φ contains the following clauses:

• Group 1: (u→ v), (v → u) for every adjacent u, v ∈ V (G) \W .

• Group 2: If u is a neighbor of `b(u) for some b ∈ {0, 1}, then there is a clause (u = b).

• Group 3: If (u, v) ∈ T, u, v 6∈W , and `bu(u) = `bv(v) for some bu, bv ∈ {0, 1}, then there is a
clause (u 6= bu ∨ v 6= bv) (e.g., if `0(u) = `1(v), then the clause is (u ∨ v)).

• Group 4: If (u, v) ∈ T, u ∈ W , v 6∈ W , and `b(v) = u for some b ∈ {0, 1}, then there is a
clause (v 6= b).

This completes the description of φ. Note that no clause is introduced for pairs (u, v) ∈ T with
u, v ∈ W , but these pairs are automatically separated by a solution that is a multiway cut of W .
Furthermore, we can assume that W induces an independent set, otherwise there is no solution.

We show first that if I has a shadowless solution S, then removing the corresponding variables
of φ makes it satisfiable. As S is shadowless and it is a multiway cut of W , every vertex of G \S is
in the same component as exactly one of `0(v) and `1(v); let the value of variable v be b if vertex v
is in the same component as `b(v). It is clear that this assignment satisfies the clauses in the first
two groups. Consider a clause (u 6= bu ∨ v 6= bv) from the third group. This means that (u, v) ∈ T
and `bu(u) = `bv(v) = w ∈ W . If this clause is not satisfied, then u = bu and v = bv. By the
way the assignment was defined, this is only possible if u is in the same component of G \ S as
`bu(u) = w and v is in the same component of G \ S as `bv(v) = w. Therefore, u and v are in the
same component of G\S, contradicting the assumption that S is a solution of I. Clauses in Group
4 can be checked similarly.

We have shown that φ can be made satisfiable by the deletion of p variables. By Theorem 5.1,
we can find such a set S′ of variables in time O∗(4p). To complete the proof, we show that such
a set S′ corresponds to a (not necessarily shadowless) solution of I. Let us show first that S′ is
a multiway cut of W . Suppose that there is a path P connecting w0, w1 ∈ W in G \ S′. We can
assume that the internal vertices of P are disjoint from W , i.e., they are in one component C of
G \W with two legs. Thus there is a path P ′ from a neighbor v0 of w0 to a neighbor v1 of w1

in C \ S′. Suppose without loss of generality that `0(C) = w0 and `1(C) = w1. As the clauses in
Group 1 are satisfied, every variable of P ′ has the same value. However, because of the clauses in
Group 2, we have xv0 = 0 and xv1 = 1, a contradiction. Therefore, we can assume that S′ is a
multiway cut of W .

Suppose now that there is some (u, v) ∈ T such that u, v 6∈ W are in the same component of
G \ S′; let P be a u− v path in G \ S′. As W is a multicut of T, it is clear that P goes through at
least one vertex of W . We have seen that S′ is a multiway cut of W , thus P goes through exactly
one vertex of W . Let P = P1wP2 for some path P1 that is fully contained in the component of
G \W containing u and path P2 fully contained in the component containing v. Let bu, bv ∈ {0, 1}
be such that `bu(u) = `bv(v) = w. Group 1 ensures that every variable of P1 has the same value
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and Group 2 ensures that the last variable of P1 has value bu, thus u = bu. A similar argument
shows that v = bv. However, this means that clause (u 6= bu ∨ v 6= vu) of Group 3 is not satisfied,
a contradiction. Finally, a similar argument shows that the clauses in Group 4 ensure that pairs
(u, v) ∈ T with u ∈W , v 6∈W are separated.

6 Hardness of Directed Multicut

We prove that Directed Edge Multicut is W[1]-hard parameterized by the solution size, thus
it is not fixed-parameter tractable (assuming the widely-held complexity hypothesis FPT 6= W[1]).
Recall that the edge and vertex versions are equivalent, thus the hardness result holds for both
versions. The proof below proves the hardness result for the weighted version of the problem, where
each edge has a positive integer weight, and the task is to find a multicut with total weight at most
p. If the weights are polynomial in the size of the input (which is true in the proof), then the
weighted version can be reduced to the unweighted version by introducing parallel edges. Thus
the proof proves the hardness of the unweighted version as well. For notational convenience, we
allow edges with weight ∞; such edges can be easily replaced by edges with sufficiently large finite
weight.

Theorem 6.1. Directed Edge Multicut is W[1]-hard parameterized by the size p of the cutset.

Proof. We prove hardness for the weighted version of the problem by parameterized reduction from
Clique. Let G be a graph with m edges and n vertices where a clique of size t has to be found. We
construct an instance of Directed Edge Multicut containing t(t− 1) gadgets: for each ordered
pair (i, j) (1 ≤ i, j ≤ t, i 6= j), there is a gadget Gi,j . Intuitively, each gadget Gi,j has 2m possible
states and a state represents an ordered pair (vi, vj) of adjacent vertices. We would like to ensure
that the gadgets describe a t-clique {v1, . . . , vt} in the sense that Gi,j represents the pair (vi, vj).
In order to enforce this interpretation, we need to connect the gadgets in a way that enforces two
properties:

(1) if Gi,j represents (vi, vj), then Gj,i represents (vj , vi), and

(2) if Gi,j represents (vi, vj) and Gi,j′ represents (ui, uj), then vi = ui.

(Note that it follows from these two conditions that if Gi,j and Gi′,j represent (vi, vj) and (ui, uj),
respectively, then vj = uj .)

Let us identify the vertices of G with the integers 0, . . . , n−1 and let us define ι(x, y) = xn+y,
which is a bijective mapping from {0, . . . , n − 1} × {0, . . . , n − 1} to {0, . . . , n2 − 1}. The gadget
Gi,j has n2 + 1 vertices w0

i,j , . . . , w
n2

i,j . Let D := 2t2. For every 0 ≤ s < n2, there is an edge
−−−−−→
wsi,jw

s+1
i,j whose weight is D if ι−1(s) is a pair (x, y) such that x and y are adjacent in G, and ∞

otherwise. Furthermore, there is an additional edge
−−−−−→
wn

2

i,jw
0
i,j with weight ∞. The Directed Edge

Multicut instance contains the terminal pair (w0
i,j , w

n2

i,j ), which means that at least one of the

edges
−−−−−−→
wsi,j , w

s+1
i,j having finite weight has to be in the multicut. If the multicut contains exactly one

such edge
−−−−−−→
wsi,j , w

s+1
i,j in the gadget, then we say that the gadget represents the pair ι−1(s). We set

p := t(t− 1)D+ t+ t(t− 1)/2 to be the maximum weight of the multicut. Since p < t(t− 1)D+D,
a multicut of weight at most p contains exactly one edge of weight D from each gadget, implying
that each gadget represents some pair.

For every 1 ≤ i < j ≤ t, we connect Gi,j and Gj,i in a way that ensures that if Gi,j represents
the pair (x, y), then Gj,i represents the pair (y, x) (see Fig. 10). More precisely, we show that if
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Figure 10: Part of a connection between gadgets Gi,j and Gj,i in the proof of Theorem 6.1. The
dashed edges represent terminal pairs.

the multicut contains exactly one edge of the connection and Gi,j (resp., Gj,i) represents the pair
(x, y) (resp., (x′, y′)), then x = y′ and y = x′. For every ordered pair (x, y) of adjacent vertices of

G, let us introduce two new vertices a
(x,y)
i,j , b

(x,y)
i,j , and the directed edge

−−−−−−−→
a
(x,y)
i,j , b

(x,y)
i,j having weight

1. Furthermore, let us add the edges
−−−−−−−−→
w
ι(x,y)
i,j a

(x,y)
i,j and

−−−−−−−−→
w
ι(y,x)
j,i a

(x,y)
i,j having weight ∞. Finally, let us

add the terminal pairs (w
ι(x,y)+1
i,j , b

(x,y)
i,j ) and (w

ι(y,x)+1
j,i , b

(x,y)
i,j ). Observe that if Gi,j represents (x, y),

then w
ι(x,y)
i,j (and hence a

(x,y)
i,j ) is reachable from w

ι(x,y)+1
i,j , which means that the multicut has to

contain the edge
−−−−−−−→
a
(x,y)
i,j , b

(x,y)
i,j . Similarly, if Gj,i represents (x′, y′), then w

ι(x′,y′)
j,i (and hence a

(y′,x′)
i,j )

is reachable from w
ι(x′,y′)+1
j,i , which means that the multicut has to contain the edge

−−−−−−−−−→
a
(y′,x′)
i,j , b

(y′,x′)
i,j .

If the multicut contains only one edge of the connection between Gi,j and Gj,i, the two edges must
coincide, and we have x = y′, y = x′.

For every 1 ≤ i ≤ t and 0 ≤ x < n, we introduce two new vertices cxi and dxi and connect

them with the edge
−−→
cxi d

x
i having weight 1. For every 1 ≤ j ≤ t, i 6= j, 0 ≤ x < n, we add an edge

−−−−−→
w
ι(x,0)
i,j cxi having weight∞ and a terminal pair (w

ι(x+1,0)
i,j , dxi ). This completes the description of the

reduction. Note that if Gi,j represents (x, y), then ι(x, 0) ≤ ι(x, y) < ι(x+ 1, 0) implies that w
ι(x,0)
i,j

is reachable from w
ι(x+1,0)
i,j , which means that the edge

−−→
cxi d

x
i has to be in the cut to prevent dxi from

being reachable from x
ι(x+1,0)
i,j .

Suppose there is a multicut of weight at most p. This means that the multicut contains at most
t(t− 1) edges of weight D, thus each gadget Gi,j contains exactly one edge of weight D, i.e., each
gadget represents some pair (x, y). As discussed in the previous two paragraphs, if Gi,j represents

(x, y), then
−−→
cxi d

x
i is in the multicut. Furthermore, depending on whether i < j or i > j holds, either

−−−−−−−→
a
(x,y)
i,j b

(x,y)
i,j or

−−−−−−−→
a
(y,x)
j,i b

(y,x)
j,i , respectively, is in the multicut as well. If the weight of the multicut is at

most p, then the total weight of these edges is at most t + t(t− 1), which is only possible if these
edge coincide in every possible way and it follows that properties (1) and (2) hold. Therefore, there
are distinct vertices v1, . . . , vt such that gadget Gi,j represents (vi, vj), which implies that v1, . . . ,
vt is a clique in G.

For the other direction, suppose that v1, . . . , vt is a clique in G. Let us consider the multicut
that contains the following edges:

•
−−−−−−−−−−−−→
w
ι(vi,vj)
i,j w

ι(vi,vj)+1
i,j for every 1 ≤ i, j ≤ t, i 6= j,

•
−−−−−−−−−→
a
(vi,vj)
i,j b

(vi,vj)
i,j for every 1 ≤ i < j ≤ t, and

•
−−−→
cvii d

vi
i for every 1 ≤ i ≤ t.

The total weight of these edges is exactly p. The edges in the first group ensure that wn
2

i,j is not

reachable from w0
i,j for any i, j. For some i < j and adjacent vertices x and y, consider a terminal

pair (w
ι(x,y)+1
i,j , b

ι(x,y)
i,j ). If (x, y) 6= (vi, vj), then edge

−−−−−−−−−−−−→
w
ι(vi,vj)
i,j w

ι(vi,vj)+1
i,j of the multicut ensures that
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w
ι(x,y)
i,j (and hence b

ι(x,y)
i,j ) is not reachable from w

ι(x,y)+1
i,j . If (x, y) = (vi, vj), then edge

−−−−−−−−−→
a
(vi,vj)
i,j b

(vi,vj)
i,j

is in the multicut, again disconnecting this terminal pair. For i > j, an analogous argument shows

that terminal pair (w
ι(x,y)+1
i,j , b

ι(y,x)
j,i ) for every x, y is disconnected. Consider now the terminal pair

(w
ι(x+1,0)
i,j , dxi ) for some 1 ≤ i, j ≤ t, i 6= j, 0 ≤ x < n. If x 6= vi, then ι(vi, vj) is either less than

ι(x, 0) or at least ι(x + 1, 0), thus the edge
−−−−−−−−−−−−→
w
ι(vi,vj)
i,j w

ι(vi,vj)+1
i,j of the multicut ensures that w

ι(x,0)
i,j

(and hence dxi ) is not reachable from w
ι(x+1,0)
i,j . On the other hand, if x = vi, then the edge

−−−→
cvii d

vi
i

is in the third group of the multicut. Thus we have shown that if there is a clique of size t in G,
then there is a multicut of size at most p.
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