241 research outputs found

    A study of frequency and pulses for stepper motor controller system by using programmable logic controller

    Get PDF
    The stepper motor movement process produced different frequency and pulses. This research explained about the frequency and pulses for the stepper motor movement by using Programmable Logic Controller (PLC) as research method. The study was done to find the suitable frequency and pulses for stepper motor movement by developing a prototype stepper motor controller system. The pulse frequency used did not affected the distance of moving load in the stepper motor operations. The increasing number of pulse frequency only will affect the time taken for the stepper motor to complete its operations. The result showed that number of pulse frequency at high operation was 5000 Hz. Pulse number reacted as a manipulated variable that affected both factor which is time taken of stepper motor operation and the distance of moving load

    A 4D Light-Field Dataset and CNN Architectures for Material Recognition

    Full text link
    We introduce a new light-field dataset of materials, and take advantage of the recent success of deep learning to perform material recognition on the 4D light-field. Our dataset contains 12 material categories, each with 100 images taken with a Lytro Illum, from which we extract about 30,000 patches in total. To the best of our knowledge, this is the first mid-size dataset for light-field images. Our main goal is to investigate whether the additional information in a light-field (such as multiple sub-aperture views and view-dependent reflectance effects) can aid material recognition. Since recognition networks have not been trained on 4D images before, we propose and compare several novel CNN architectures to train on light-field images. In our experiments, the best performing CNN architecture achieves a 7% boost compared with 2D image classification (70% to 77%). These results constitute important baselines that can spur further research in the use of CNNs for light-field applications. Upon publication, our dataset also enables other novel applications of light-fields, including object detection, image segmentation and view interpolation.Comment: European Conference on Computer Vision (ECCV) 201

    SARS-2 COVID-19-induced immunity response, a new prognostic marker for the pregnant population correlates inversely with neonatal Apgar score

    Get PDF
    Background: The COVID-19 infection has impacted pregnancy outcomes; however, few studies have assessed the association between haematological parameters and virus-related pregnancy and neonatal outcomes. We hypothesised differences in routine haematology indices in pregnant and non-pregnant COVID-19 patients as well as COVID-19-negative pregnant subjects and observed neonatal outcomes in all pregnant populations. Further, we tested if pattern identification in the COVID-19 pregnant population would facilitate prediction of neonates with a poor Apgar score. Methods: We tested our hypothesis in 327 patients (111 COVID-19-positive pregnant females, 169 COVID-19-negative pregnant females and 47 COVID-19-positive non-pregnant females) in whom standard routine laboratory indices were collected on admission. Results: Pregnant COVID-19-positive patients exhibited higher WBC, neutrophil, monocyte counts as well as neutrophil/lymphocyte and neutrophil/eosinophil ratio compared to non-pregnant COVID-19-positive patients (p = 0.00001, p = 0.0023, p = 0.00002, p = 0.0402, p = 0.0161, p = 0.0352, respectively). Preterm delivery was more prevalent in COVID-19-positive pregnant patients accompanied with a significantly lower birth weight (2894.37 (± 67.50) g compared with 3194.16 (± 50.61) g, p = 0.02) in COVID-19-negative pregnant patients. The COVID-19-Induced Immunity Response (CIIR) was defined as (WBC × neutrophil) / eosinophil; Apgar scores were significantly and inversely correlated with the CIIR index (r =—0.162). Interpretation: Pregnancy appears to give rise to an increased immune response to COVID-19 which appears to protect the mother, however may give rise to complications during labour as well as neonatal concerns. CIIR is a simple metric that predicts neonatal distress to aid clinicians in determining the prognosis of COVID-19 and help provide early intensive intervention to reduce complications

    Novel controlled-release polylactic-co-glycolic acid (PLGA) nanoparticles for sodium thiosulphate, a hydrogen sulphide donor, retains pro-angiogenic potential of hydrogen sulphide

    Get PDF
    Hydrogen sulphide (H2S) is an endogenous gaseous signalling molecule observing cardioprotective qualities in various experimental models. However, its therapeutic application is limited due to rapid release in vivo and potential toxicity. Controlled-release nanoparticles (NPs), such as polylactic-co-glycolic acid (PLGA) NPs entrapping H2S compounds may address these issues. PLGA NPs’ encapsulating sodium thiosulphate (STS), a H2S donor, were prepared by emulsification and sonication-solvent evaporation in polyvinyl alcohol (PVA). Sonication time was varied between 15 and 45 s and PVA concentration varied between 0.3 and 0.7% w/v. NPs were characterised, cellular uptake, H2S generation and encapsulated STS angiogenic potential was explored. An increase in sonication time as well as PVA concentration decreased NPs size resulting in an increase in STS release kinetics and cellular uptake over 24 h. Encapsulated STS gave a controlled release of H2S over 24 h whereas non-encapsulated STS peaked at 2 h. Finally, we observed entrapped STS maintained pro-angiogenic potential. PLGA NPs are a promising controlled-release delivery system with potential to offer sustained H2S levels. Results of this study demonstrate formulation of STS-loaded PLGA NPs provides a controlled-release of STS and therefore H2S. NPs are internalised into cells and critically, PLGA NPs are able to maintain the pro-angiogenic potential of H2S

    Potential of Complementary and Alternative Medicine in Preventive Management of Novel H1N1 Flu (Swine Flu) Pandemic: Thwarting Potential Disasters in the Bud

    Get PDF
    The emergence of novel H1N1 has posed a situation that warrants urgent global attention. Though antiviral drugs are available in mainstream medicine for treating symptoms of swine flu, currently there is no preventive medicine available. Even when available, they would be in short supply and ineffective in a pandemic situation, for treating the masses worldwide. Besides the development of drug resistance, emergence of mutant strains of the virus, emergence of a more virulent strain, prohibitive costs of available drugs, time lag between vaccine developments, and mass casualties would pose difficult problems. In view of this, complementary and alternative medicine (CAM) offers a plethora of interesting preventive possibilities in patients. Herbs exhibit a diverse array of biological activities and can be effectively harnessed for managing pandemic flu. Potentially active herbs can serve as effective anti influenza agents. The role of CAM for managing novel H1N1 flu and the mode of action of these botanicals is presented here in an evidence-based approach that can be followed to establish their potential use in the management of influenza pandemics. The complementary and alternative medicine approach deliberated in the paper should also be useful in treating the patients with serious influenza in non pandemic situations

    World society of emergency surgery study group initiative on Timing of Acute Care Surgery classification (TACS).

    Get PDF
    Timing of surgical intervention is critical for outcomes of patients diagnosed with surgical emergencies. Facing the challenge of multiple patients requiring emergency surgery, or of limited resource availability, the acute care surgeon must triage patients according to their disease process and physiological state. Emergency operations from all surgical disciplines should be scheduled by an agreed time frame that is based on accumulated data of outcomes related to time elapsed from diagnosis to surgery. Although literature exists regarding the optimal timing of various surgical interventions, implementation of protocols for triage of surgical emergencies is lacking. For institutions of a repetitive triage mechanism, further discussion on optimal timing of surgery in diverse surgical emergencies should be encouraged. Standardizing timing of interventions in surgical emergencies will promote clinical investigation as well as a commitment by administrative authorities to proper operating theater provision for acute care surgery

    Status of Early-Career Academic Cardiology, A Global Perspective

    Get PDF
    Early career academic cardiologists, whom many believe are an important component of the future of cardiovascular care, face a myriad of challenges. The Early Career Section Academic Working Group of the American College of Cardiology (ACC) along with senior leadership support, assessed the progress of this cohort from 2013–2016 with a global perspective. Data consisted of accessing National Heart Lung and Blood Institute (NHLBI) public information, American Heart Association and international organizations providing data, and a membership-wide survey. Although NHBLI increased funding of career development grants, only a small number of early career ACC members have benefited as funding of the entire cohort has decreased. Personal motivation, institutional support, and collaborators continued to be positive influential factors. Surprisingly, mentoring ceased to correlate positively with obtaining external grants. Totality of findings suggests that the status of early career academic cardiologists remain challenging; therefore, we recommend a set of attainable solutions

    Surface PEGylation suppresses pulmonary effects of CuO in allergen-induced lung inflammation

    Get PDF
    BACKGROUND: Copper oxide (CuO) nanomaterials are used in a wide range of industrial and commercial applications. These materials can be hazardous, especially if they are inhaled. As a result, the pulmonary effects of CuO nanomaterials have been studied in healthy subjects but limited knowledge exists today about their effects on lungs with allergic airway inflammation (AAI). The objective of this study was to investigate how pristine CuO modulates allergic lung inflammation and whether surface modifications can influence its reactivity. CuO and its carboxylated (CuO COOH), methylaminated (CuO NH3) and PEGylated (CuO PEG) derivatives were administered here on four consecutive days via oropharyngeal aspiration in a mouse model of AAI. Standard genome-wide gene expression profiling as well as conventional histopathological and immunological methods were used to investigate the modulatory effects of the nanomaterials on both healthy and compromised immune system. RESULTS: Our data demonstrates that although CuO materials did not considerably influence hallmarks of allergic airway inflammation, the materials exacerbated the existing lung inflammation by eliciting dramatic pulmonary neutrophilia. Transcriptomic analysis showed that CuO, CuO COOH and CuO NH3 commonly enriched neutrophil-related biological processes, especially in healthy mice. In sharp contrast, CuO PEG had a significantly lower potential in triggering changes in lungs of healthy and allergic mice revealing that surface PEGylation suppresses the effects triggered by the pristine material. CONCLUSIONS: CuO as well as its functionalized forms worsen allergic airway inflammation by causing neutrophilia in the lungs, however, our results also show that surface PEGylation can be a promising approach for inhibiting the effects of pristine CuO. Our study provides information for health and safety assessment of modified CuO materials, and it can be useful in the development of nanomedical applications

    Common variants in CLDN2 and MORC4 genes confer disease susceptibility in patients with chronic pancreatitis

    Get PDF
    A recent Genome-wide Association Study (GWAS) identified association with variants in X-linked CLDN2 and MORC4 and PRSS1-PRSS2 loci with Chronic Pancreatitis (CP) in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525—OR 1.71, P = 1.38 x 10-09; rs12008279—OR 1.56, P = 1.53 x 10-04) and 2 variants in MORC4 gene (rs12688220—OR 1.72, P = 9.20 x 10-09; rs6622126—OR 1.75, P = 4.04x10-05) in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06) and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31–0.78], P = 0.0027). A variant in the gene MORC4 (rs12688220) showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068) suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14). Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients
    corecore