82 research outputs found

    Exploratory study of macrophage polarization and spatial distribution in colorectal cancer liver metastasis: a pilot study

    Get PDF
    BackgroundThe liver is the most typical site of metastatic disease for patients with colorectal cancer (CRC), and up to half the patients with CRC will develop colorectal liver metastasis (CLM). Studying the tumor microenvironment, particularly macrophages and their spatial distribution, can give us critical insight into treatment.MethodsTen CLMs (five treatment-naïve and five post–neoadjuvant chemotherapy) were stained with multiplex immunofluorescence panels against cytokeratins, CD68, Arg1, CD206, CD86, CD163, PD-L1, and MRP8-14. Densities of cell phenotypes and their spatial distribution in the tumor center and the normal liver–tumor interface were correlated with clinicopathological variables.ResultsM2 macrophages were the predominant subtype in both the tumor center and the periphery, with a relatively higher density at the periphery. The larger tumors, more than 3.9 cm, were associated with higher densities of total CD68+ macrophages and CD68+CD163+ CD206neg and CD68+CD206+ CD163neg M2 macrophage subtypes. Total macrophages in the tumor periphery demonstrated significantly greater proximity to malignant cells than did those in the tumor center (p=0.0371). The presence of higher than median CD68+MRP8-14+CD86neg M1 macrophages in the tumor center was associated with poor overall survival (median 2.34 years) compared to cases with lower than median M1 macrophages at the tumor center (median 6.41 years) in univariate analysis.ConclusionThe dominant polarization of the M2 macrophage subtype could drive new therapeutic approaches in CLM patients

    RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases.

    Get PDF
    ObjectiveTo determine the impact of RAS mutation status on survival and patterns of recurrence in patients undergoing curative resection of colorectal liver metastases (CLM) after preoperative modern chemotherapy.BackgroundRAS mutation has been reported to be associated with aggressive tumor biology. However, the effect of RAS mutation on survival and patterns of recurrence after resection of CLM remains unclear.MethodsSomatic mutations were analyzed using mass spectroscopy in 193 patients who underwent single-regimen modern chemotherapy before resection of CLM. The relationship between RAS mutation status and survival outcomes was investigated.ResultsDetected somatic mutations included RAS (KRAS/NRAS) in 34 (18%), PIK3CA in 13 (7%), and BRAF in 2 (1%) patients. At a median follow-up of 33 months, 3-year overall survival (OS) rates were 81% in patients with wild-type versus 52.2% in patients with mutant RAS (P = 0.002); 3-year recurrence-free survival (RFS) rates were 33.5% with wild-type versus 13.5% with mutant RAS (P = 0.001). Liver and lung recurrences were observed in 89 and 83 patients, respectively. Patients with RAS mutation had a lower 3-year lung RFS rate (34.6% vs 59.3%, P < 0.001) but not a lower 3-year liver RFS rate (43.8% vs 50.2%, P = 0.181). In multivariate analyses, RAS mutation predicted worse OS [hazard ratio (HR) = 2.3, P = 0.002), overall RFS (HR = 1.9, P = 0.005), and lung RFS (HR = 2.0, P = 0.01), but not liver RFS (P = 0.181).ConclusionsRAS mutation predicts early lung recurrence and worse survival after curative resection of CLM. This information may be used to individualize systemic and local tumor-directed therapies and follow-up strategies

    Association of CpG island methylator phenotype and EREG/AREG methylation and expression in colorectal cancer

    Get PDF
    BACKGROUND: High EREG and AREG expression, and left-sided primary tumours are associated with superior efficacy of anti-epidermal growth factor receptor (EGFR) therapy in metastatic colorectal cancer (CRC), but a unifying explanation of these findings is lacking. METHODS: RNA-seq, gene expression arrays, and DNA methylation profiling were completed on 179 CRC tumours. Results were validated using independent The Cancer Genome Atlas data sets. An independent cohort of 198 KRAS wild-type metastatic CRC tumours was tested for CpG island methylator phenotype (CIMP) status, and progression-free survival (PFS) with the first anti-EGFR regimen was retrospectively determined. RESULTS: EREG and AREG expression was highly inversely correlated with methylation and was inversely associated with right-sided primary tumour, BRAF mutation, and CIMP-high status. Treatment of CRC cell lines with hypomethylating agents decreased methylation and increased expression of EREG. Inferior PFS with anti-EGFR therapy was associated with CIMP-high status, BRAF mutation, NRAS mutation, and right-sided primary tumour on univariate analysis. Among known BRAF/NRAS wild-type tumours, inferior PFS remained associated with CIMP-high status (median PFS 5.6 vs 9.0 mo, P=0.023). CONCLUSIONS: EREG and AREG are strongly regulated by methylation, and their expression is associated with CIMP status and primary tumour site, which may explain the association of primary tumour site and EREG/AREG expression with anti-EGFR therapy efficacy

    Endothelial Cells Promote the Colorectal Cancer Stem Cell Phenotype through a Soluble Form of Jagged-1

    Get PDF
    SummaryWe report a paracrine effect whereby endothelial cells (ECs) promote the cancer stem cell (CSC) phenotype of human colorectal cancer (CRC) cells. We showed that, without direct cell-cell contact, ECs secrete factors that promoted the CSC phenotype in CRC cells via Notch activation. In human CRC specimens, CD133 and Notch intracellular domain-positive CRC cells colocalized in perivascular regions. An EC-derived, soluble form of Jagged-1, via ADAM17 proteolytic activity, led to Notch activation in CRC cells in a paracrine manner; these effects were blocked by immunodepletion of Jagged-1 in EC-conditioned medium or blockade of ADAM17 activity. Collectively, ECs play an active role in promoting Notch signaling and the CSC phenotype by secreting soluble Jagged-1

    Peningkatan Prestasi Belajar CAD Mahasiswa Teknik Otomotif Non-Reguler FT UNY melalui Pembuatan “Pohon Kata” Perintah dalam Program AutoCAD

    Full text link
    Penelitian ini bertujuan meningkatkan prestasi belajar mata kuliah Computer Aided Design (CAD) mahasiswa prodi Teknik Otomotif Non-Reguler yang dinyatakan dalam bentuk rerata nilai akhir semester yang berasal dari komponen nilai tugas harian, nilai ujian tengah semester dan nilai ujian akhir semester. Penelitian quasi-eksperimen ini terdiri dari tahapan penelitian diawali dengan penyusunan materi pembelajaran sejumlah pokok bahasan tertentu dalam satu job sheet (lembar kerja), dilanjutkan dengan pembuatan bantuan “Pohon Kata” perintah dalam Auto CAD kepada kelas eksperimen yang ditentukan secara random dari dua kelas peserta kuliah Auto CAD pada Semester Genap 2008/2009. Kedua kelas diamati prestasinya, baik kecepatan penyelesaiannya maupun kualitas kebenaran gambarnya. Prestasi belajar kedua kelas juga diukur melalui pemberian ujian tengah semester dan ujian akhir semester. Setelah data prestasi kedua kelas terkumpul dilanjutkan dengan analisis statistik melalui uji beda (t-test) setelah sebelumnya dilakukan uji persyaratan analisis yang ternyata dapat dipenuhi. Hasil penelitian ini disimpulkan bahwa: prestasi belajar CAD mahasiswa pada kelas yang diberi perlakuan strategi pembelajaran menggunakan “Pohon Kata” perintah dalam Program Auto CAD lebih baik dibanding prestasi belajar CAD mahasiswa pada kelas yang tidak diberi perlakuan (75,41>70,89), dengan demikian pembelajaran CAD menggunakan media “Pohon Kata” perintah dalam Program Auto CAD dapat meningkatkan prestasi belajar mahasiswa Teknik Otomotif Program Non-Reguler

    The consensus molecular subtypes of colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-beta activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions

    The Consensus Molecular Subtypes of Colorectal Cancer

    Get PDF
    Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use -- https://www.nature.com/authors/policies/license.html#termsColorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMS) with distinguishing features: CMS1 (MSI Immune, 14%), hypermutated, microsatellite unstable, strong immune activation; CMS2 (Canonical, 37%), epithelial, chromosomally unstable, marked WNT and MYC signaling activation; CMS3 (Metabolic, 13%), epithelial, evident metabolic dysregulation; and CMS4 (Mesenchymal, 23%), prominent transforming growth factor β activation, stromal invasion, and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intra-tumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC - with clear biological interpretability - and the basis for future clinical stratification and subtype-based targeted interventions

    T-cell depletion of allogeneic bone marrow using anti-αβTCR monoclonal antibody: Prevention of graft-versus-host disease without affecting engraftment potential in rats

    No full text
    Bone marrow chimerism may solve two major limitations in the transplantation of solid organs and cellular grafts: (1) the requirement for life-long immunosuppressive therapy, and (2) acute and chronic rejection. When untreated bone marrow is transplanted into major histocompatibility complex (MHC)– disparate rats, lethal graft-vs-host disease (GVHD) occurs in the majority of recipients. T-cell depletion using anti-CD3 and anti-CD5 monoclonal antibody (mAb) to avoid GVHD led to an increased occurrence of failure of engraftment. We previously identified a cellular population in mouse bone marrow that facilitates engraftment of highly purified hematopoietic stem cells (HSC) across complete MHC barriers. In light of the fact that facilitating cells have a CD8 + /CD3 + /TCR − phenotype and mostly coexpress CD5, we evaluated in this study whether T-cell depletion of rat bone marrow using anti-αβTCR mAb would retain engraftment potential yet avoid GVHD. T-cell depletion of bone marrow was performed using anti-αβTCR mAb and immunomagnetic beads. Recipients were conditioned with 1100 or 1000 cGy of total body irradiation and reconstituted with 100 × 10 6 T-cell depleted (TCD) MHC- and minor antigen-disparate bone marrow cells. Animals were monitored clinically and histologically for GVHD. Chimerism was assessed by flow cytometry. Immunomagnetic bead depletion resulted in a reduction of T cells from 1.92% ± 0.21% to 0.10% ± 0.04% of total bone marrow. T-cell depletion did not remove facilitating cells (CD8 + /αβTCR − /γδTCR − /NK3.2.3 − ) from bone marrow. Further, the engraftment potential of TCD bone marrow was not affected, as 100% of animals engrafted and high levels of donor chimerism were detectable. Animals reconstituted with TCD bone marrow showed no clinical evidence of GVHD and histology revealed none to minimal changes, whereas recipients transplanted with untreated bone marrow succumbed to severe lethal GVHD. T-cell depletion using anti-αβTCR mAb and immunomagnetic beads selectively removes T cells from the bone marrow graft while sparing facilitating cells that are required for engraftment of allogeneic bone marrow across MHC barriers. Moreover, the cells required for engraftment of HSC do not produce GVHD
    corecore