720 research outputs found
Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness
BACKGROUND: Abdominal aortic aneurysm (AAA) is a prevalent disease which is of significant concern because of the morbidity associated with the continuing expansion of the abdominal aorta and its ultimate rupture. The transient interaction between blood flow and the wall contributes to wall stress which, if it exceeds the failure strength of the dilated arterial wall, will lead to aneurysm rupture. Utilizing a computational approach, the biomechanical environment of virtual AAAs can be evaluated to study the affects of asymmetry and wall thickness on this stress, two parameters that contribute to increased risk of aneurysm rupture. METHODS: Ten virtual aneurysm models were created with five different asymmetry parameters ranging from ÎČ = 0.2 to 1.0 and either a uniform or variable wall thickness to study the flow and wall dynamics by means of fully coupled fluid-structure interaction (FSI) analyses. The AAA wall was designed to have a (i) uniform 1.5 mm thickness or (ii) variable thickness ranging from 0.5 â 1.5 mm extruded normally from the boundary surface of the lumen. These models were meshed with linear hexahedral elements, imported into a commercial finite element code and analyzed under transient flow conditions. The method proposed was then compared with traditional computational solid stress techniques on the basis of peak wall stress predictions and cost of computational effort. RESULTS: The results provide quantitative predictions of flow patterns and wall mechanics as well as the effects of aneurysm asymmetry and wall thickness heterogeneity on the estimation of peak wall stress. These parameters affect the magnitude and distribution of Von Mises stresses; varying wall thickness increases the maximum Von Mises stress by 4 times its uniform thickness counterpart. A pre-peak systole retrograde flow was observed in the AAA sac for all models, which is due to the elastic energy stored in the compliant arterial wall and the expansion force of the artery during systole. CONCLUSION: Both wall thickness and geometry asymmetry affect the stress exhibited by a virtual AAA. Our results suggest that an asymmetric AAA with regional variations in wall thickness would be exposed to higher mechanical stresses and an increased risk of rupture than a more fusiform AAA with uniform wall thickness. Therefore, it is important to accurately reproduce vessel geometry and wall thickness in computational predictions of AAA biomechanics
Treatment of Lenalidomide Exposed or Refractory Multiple Myeloma: Network Meta-Analysis of Lenalidomide-Sparing Regimens
Over the past 10 years, the treatment of multiple myeloma (MM) dramatically changed due to the introduction of a number of new agents and combination regimens both in the frontline and in the relapsed/refractory setting. Currently, at least 11 classes of therapeutic agents, including steroids, alkylators (melphalan and cyclophosphamide), proteasome inhibitors (PI: bortezomib, carfilzomib, ixazomib), immunomodulatory agents (thalidomide, lenalidomide, pomalidomide), monoclonal antibodies (mAbs: elotuzumab, daratumumab), HDAC-inhibitors (panobinostat), BCL2 inhibitors (venetoclax), selective inhibitors of nuclear export (selinexor), drug-conjugated mAbs (belantamab mafodotin), bispecific agents and CAR-T, are approved (or are going to be approved) alone or in different combinations for the treatment of this disease, while few or no data are available to guide the therapeutic strategy to adopt at diagnosis or relapse (1). The choice of the treatment at relapse (2), in particular, poses particular challenges, and is currently dependent on patients (age, comorbidities, fitness, renal impairment, frailty) and disease characteristics (aggressive vs biochemical relapse, cytogenetics, presence of extra-medullary disease), previous treatments (classes of agents, duration of response, progression while on therapy), regional drug access (approval of combinations, reimbursement, costs) and, finally, patientâs choice. Unfortunately, there is a lack of trials specifically designed to help in this choice, and often, pre-planned subgroup analyses, do not include a sufficient number of patients to reach statistical evidence. Recently, since lenalidomide is progressively becoming the preferred one-line option to treat MM patients (and often, it is administered until progression), the choice of the treatment to be offered at relapse should be carefully evaluated. Interestingly, it has been reported that the longest prior lenalidomide treatment duration (>12 months) and IMiD-free interval (>18 months) could positively impact patientsâ outcome (3), making the choice of a lenalidomide-sparing regimen of particular interest in this setting. On the bases of these premises, we performed a systematic review and a frequentist network meta-analysis in R [by using the netmeta package (4)] comparing direct and indirect evidence on the efficacy of seven different lenalidomide-sparing regimens (bortezomib-dexamethasone, VD; daratumumab-VD, DVD; carfilzomib-D, KD; daratumumab-KD, KdD; pomalidomide-VD, PVD; isatuximab-KD, IKD; selinexor-VD, SVD) in lenalidomide-exposed and lenalidomide-refractory patients, to provide statistical evidence to support clinical decision makin
Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus
The objective of this work was to determine the linear and non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus and to study the changes in mechanical properties throughout the thickness of the thrombus. Samples are gathered from thrombi of seven patients. Linear viscoelastic data from oscillatory shear experiments show that the change of properties throughout the thrombus is different for each thrombus. Furthermore the variations found within one thrombus are of the same order of magnitude as the variation between patients. To study the non-linear regime, stress relaxation experiments are performed. To describe the phenomena observed experimentally, a non-linear multimode model is presented. The parameters for this model are obtained by fitting this model successfully to the experiments. The model cannot only describe the average stress response for all thrombus samples but also the highest and lowest stress responses. To determine the influence on the wall stress of the behavior observed the model proposed needs to implemented in the finite element wall stress analysis
The statistical neuroanatomy of frontal networks in the macaque
We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework
The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state
We introduce and analyze a minimal model of epigenetic silencing in budding
yeast, built upon known biomolecular interactions in the system. Doing so, we
identify the epigenetic marks essential for the bistability of epigenetic
states. The model explicitly incorporates two key chromatin marks, namely H4K16
acetylation and H3K79 methylation, and explores whether the presence of
multiple marks lead to a qualitatively different systems behavior. We find that
having both modifications is important for the robustness of epigenetic
silencing. Besides the silenced and transcriptionally active fate of chromatin,
our model leads to a novel state with bivalent (i.e., both active and
silencing) marks under certain perturbations (knock-out mutations, inhibition
or enhancement of enzymatic activity). The bivalent state appears under several
perturbations and is shown to result in patchy silencing. We also show that the
titration effect, owing to a limited supply of silencing proteins, can result
in counter-intuitive responses. The design principles of the silencing system
is systematically investigated and disparate experimental observations are
assessed within a single theoretical framework. Specifically, we discuss the
behavior of Sir protein recruitment, spreading and stability of silenced
regions in commonly-studied mutants (e.g., sas2, dot1) illuminating the
controversial role of Dot1 in the systems biology of yeast silencing.Comment: Supplementary Material, 14 page
Cardiac toxicity of trastuzumab in metastatic breast cancer patients previously treated with high-dose chemotherapy: a retrospective study
HER-2 overexpression is associated to a poor prognosis in high-risk and metastatic breast cancer (MBC) patients treated with high-dose chemotherapy (HDC). HER-2 status is also a predictive factor and when trastuzumab is administered in combination with or sequentially to chemotherapy, a significant disease-free and/or overall survival improvement has been observed in HER-2+ early and MBC. Unfortunately, in both settings, trastuzumab is associated with an increased risk of cardiac dysfunction (CD). We have reviewed the clinical charts of HER-2-overexpressing MBC patients treated with trastuzumab after HDC. Age, baseline left ventricular ejection fraction (LVEF), radiation therapy on cardiac area, exposure to anthracycline, single or multiple transplant, high-dose agents, trastuzumab treatment duration were recorded as potential risk factors. In total, 53 patients have been included in the analysis. Median LVEF at baseline was 60.5%; at the end of trastuzumab (data available for 28 patients only), it was 55% (P=0.01). Five out of the 28 (17.9%) patients experienced CD. Two out of 53 (3.8%) patients developed a congestive heart failure. Age â©Ÿ50 years and multiple transplant procedure were potential risk factors for CD. The overall incidence of CD observed in this population of HER-2+ MBC patients treated with trastuzumab after HDC is not superior to that reported with concomitant trastuzumab and anthracyclines. However, patients with age â©Ÿ50 years or receiving multiple course of HDC should be considered at risk for CD
Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine
In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown
Longitudinal study of DNA methylation during the first 5 years of life.
Background: Early life epigenetic programming influences adult health outcomes. Moreover, DNA methylation levels have been found to change more rapidly during the first years of life. Our aim was the identification and characterization of the CpG sites that are modified with time during the first years of life. We hypothesize that these DNA methylation changes would lead to the detection of genes that might be epigenetically modulated by environmental factors during early childhood and which, if disturbed, might contribute to susceptibility to diseases later in life. Methods: The study of the DNA methylation pattern of 485577 CpG sites was performed on 30 blood samples from 15 subjects, collected both at birth and at 5 years old, using IlluminaÂź Infinium 450 k array. To identify differentially methylated CpG (dmCpG) sites, the methylation status of each probe was examined using linear models and the Empirical Bayes Moderated t test implemented in the limma package of R/Bioconductor. Surogate variable analysis was used to account for batch effects. Results: DNA methylation levels significantly changed from birth to 5 years of age in 6641 CpG sites. Of these, 36.79 % were hypermethylated and were associated with genes related mainly to developmental ontology terms, while 63.21 % were hypomethylated probes and associated with genes related to immune function. Conclusions: Our results suggest that DNA methylation alterations with age during the first years of life might play a significant role in development and the regulation of leukocyte-specific functions. This supports the idea that blood leukocytes experience genome remodeling related to their interaction with environmental factors, underlining the importance of environmental exposures during the first years of life and suggesting that new strategies should be take into consideration for disease prevention
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
- âŠ