6,975 research outputs found

    Enhanced optical properties of Cd–Mg-co-doped ZnO nanoparticles induced by low crystal structure distortion

    Get PDF
    The growth of CdxMg0.125-xZn0.875O nanoparticles with yellow-orange luminescence is achieved up to 2.5 at. % Cd via a modified sol–gel process. X-ray diffraction analysis confirmed that all the nanoparticles have the hexagonal wurtzite structure. It is found that Cd doping has a considerable effect on the crystal size, microstrain, band gap, and photoluminescence of the Mg0·125Zn0·875O structure, originating from a preferred crystallographic orientation along the (101) plane of the wurtzite structure. The shift and broadening of the E2(high) mode observed in the Raman spectra due to growth-induced strain corroborates the small distortion observed in the X-ray diffraction data. The optical band gap varies from 3.21 eV to 2.74 eV, being redshifted with increasing Cd concentration (from 0 at. % to 2.5 at. %). The photoluminescence obtained with an excitation wavelength of 325 nm has a broad yellow-orange emission peak at around 640 nm due to transitions related to oxygen vacancies and interstitial oxygen atoms. We located the yellow-orange emission in the chromaticity coordinate diagram in the 2683–2777 K colour temperature region, demonstrating that CdxMg0.125-xZnO0.875 nanoparticles have potential applications in white light-emitting diodes.publishe

    Nanoindentation Response of 3D Printed PEGDA Hydrogels in a Hydrated Environment

    Get PDF
    Hydrogels are commonly used materials in tissue engineering and organ-on-chip devices. This study investigated the nanomechanical properties of monolithic and multilayered poly(ethylene glycol) diacrylate (PEGDA) hydrogels manufactured using bulk polymerization and layer-by-layer projection lithography processes, respectively. An increase in the number of layers (or reduction in layer thickness) from 1 to 8 and further to 60 results in a reduction in the elastic modulus from 5.53 to 1.69 and further to 0.67 MPa, respectively. It was found that a decrease in the number of layers induces a lower creep index (CIT) in three-dimensional (3D) printed PEGDA hydrogels. This reduction is attributed to mesoscale imperfections that appear as pockets of voids at the interfaces of the multilayered hydrogels attributed to localized regions of unreacted prepolymers, resulting in variations in defect density in the samples examined. An increase in the degree of cross-linking introduced by a higher dosage of ultraviolet (UV) exposure leads to a higher elastic modulus. This implies that the elastic modulus and creep behavior of hydrogels are governed and influenced by the degree of cross-linking and defect density of the layers and interfaces. These findings can guide an optimal manufacturing pathway to obtain the desirable nanomechanical properties in 3D printed PEGDA hydrogels, critical for the performance of living cells and tissues, which can be engineered through control of the fabrication parameters

    Establishment of the bacterial fecal community during the first month of life in Brazilian newborns

    Get PDF
    OBJECTIVE: The establishment of the intestinal microbiota in newborns is a critical period with possible long-term consequences for human health. In this research, the development of the fecal microbiota of a group of exclusively breastfed neonates living in low socio-economic conditions in the city of São Paulo, Brazil, during the first month of life, was studied. METHODS: Fecal samples were collected from ten neonates on the second, seventh, and 30th days after birth. One of the neonates underwent antibiotic therapy. Molecular techniques were used for analysis; DNA was extracted from the samples, and 16S rRNA libraries were sequenced and phylogenetically analyzed after construction. A real-time polymerase chain reaction (PCR) was performed on the samples taken from the 30th day to amplify DNA from Bifidobacterium sp. RESULTS: The primary phylogenetic groups identified in the samples were Escherichia and Clostridium. Staphylococcus was identified at a low rate. Bifidobacterium sp. was detected in all of the samples collected on the 30th day. In the child who received antibiotics, a reduction in anaerobes and Escherichia, which was associated with an overgrowth of Klebsiella, was observed throughout the experimental period. CONCLUSION: The observed pattern of Escherichia predominance and reduced Staphylococcus colonization is in contrast with the patterns observed in neonates living in developed countries

    Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2-deoxyguanosine oxidation

    Get PDF
    8-Oxo-7,8-dihydroguanine (8-oxoGua), an important biomarker of DNA damage in oxidatively generated stress, is highly reactive towards further oxidation. Much work has been carried out to investigate the oxidation products of 8-oxoGua by one-electron oxidants, singlet oxygen, and peroxynitrite. This report details for the first time, the iron- and copper-mediated Fenton oxidation of 8-oxoGua and 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodGuo). Oxidised guanidinohydantoin (Ghox) was detected as the major product of oxidation of 8-oxoGua with iron or copper and hydrogen peroxide, both at pH 7 and pH 11. Oxaluric acid was identified as a final product of 8-oxoGua oxidation. 8-oxodGuo was subjected to oxidation under the same conditions as 8-oxoGua. However, dGhox was not generated. Instead, spiroiminodihydantoin (Sp) was detected as the major product for both iron and copper mediated oxidation at pH 7. It was proposed that the oxidation of 8-oxoGua was initiated by its one-electron oxidation by the metal species, which leads to the reactive intermediate 8-oxoGua?+, which readily undergoes further oxidation. The product of 8-oxoGua and 8-oxodGuo oxidation was determined by the 29-deoxyribose moiety of the 8-oxodGuo, not whether copper or iron was the metal involved in the oxidation

    A microscopy study of nickel-based superalloys performance in type I hot corrosion conditions

    Get PDF
    Alloy material selection for sustainable, efficient, and cost-effective use in components is a key requirement for both power generation and aerospace sectors. Superalloys are manufactured using a combination of different elements, selected carefully to balance mechanical performance and environmental resistance to be used in a variety of different service conditions. Therefore, a fundamental understanding of each element is critical to alloy design. In this paper, the interaction of alloy chemistry, particularly chromium as a corrosion-resistant element along with titanium and molybdenum, and their effect on alloys performance for the relevant gas turbine industries were discussed. Based on the findings, the single-crystal alloy is found to be a better corrosion resistant alloy exhibited higher corrosion resistance in comparison to polycrystal alloys and proved that microstructure has a significant impact on alloy performance. This study also established that molybdenum level in chromia former alloys can significantly enhance the corrosion damage

    Stretch-induced activation of pannexin 1 channels can be prevented by pka-dependent phosphorylation

    Get PDF
    Indexación ScopusPannexin 1 channels located in the cell membrane are permeable to ions, metabolites, and signaling molecules. While the activity of these channels is known to be modulated by phosphorylation on T198, T308, and S206, the possible involvement of other putative phosphorylation sites remains unknown. Here, we describe that the activity of Panx1 channels induced by mechanical stretch is reduced by adenosine via a PKA-dependent pathway. The mechanical stretch-induced activity—measured by changes in DAPI uptake—of Panx1 channels expressed in HeLa cell transfectants was inhibited by adenosine or cAMP analogs that permeate the cell membrane. Moreover, inhibition of PKA but not PKC, p38 MAPK, Akt, or PKG prevented the effects of cAMP analogs, suggesting the involvement of Panx1 phosphorylation by PKA. Accordingly, alanine substitution of T302 or S328, two putative PKA phosphorylation sites, prevented the inhibitory effect of cAMP analogs. Moreover, phosphomimetic mutation of either T302 or S328 to aspartate prevented the mechanical stretch-induced activation of Panx1 channels. A molecular dynamics simulation revealed that T302 and S328 are located in the water–lipid interphase near the lateral tunnel of the intracellular region, suggesting that their phosphorylation could promote conformational changes in lateral tunnels. Thus, Panx1 phosphorylation via PKA could be modulated by G protein-coupled receptors associated with the Gs subunit. © 2020, MDPI AG. All rights reserved.https://www.mdpi.com/1422-0067/21/23/918

    Establishment of the bacterial fecal community during the first month of life in Brazilian newborns

    Get PDF
    OBJECTIVE: The establishment of the intestinal microbiota in newborns is a critical period with possible long-term consequences for human health. In this research, the development of the fecal microbiota of a group of exclusively breastfed neonates living in low socio-economic conditions in the city of Sao Paulo, Brazil, during the first month of life, was studied. METHODS: Fecal samples were collected from ten neonates on the second, seventh, and 30th days after birth. One of the neonates underwent antibiotic therapy. Molecular techniques were used for analysis; DNA was extracted from the samples, and 16S rRNA libraries were sequenced and phylogenetically analyzed after construction. A real-time polymerase chain reaction (PCR) was performed on the samples taken from the 30th day to amplify DNA from Bifidobacterium sp. RESULTS: The primary phylogenetic groups identified in the samples were Escherichia and Clostridium. Staphylococcus was identified at a low rate. Bifidobacterium sp. was detected in all of the samples collected on the 30th day. In the child who received antibiotics, a reduction in anaerobes and Escherichia, which was associated with an overgrowth of Klebsiella, was observed throughout the experimental period. CONCLUSION: The observed pattern of Escherichia predominance and reduced Staphylococcus colonization is in contrast with the patterns observed in neonates living in developed countries

    Mapping the ionized gas of the metal-poor HII galaxy PHL 293B with MEGARA

    Full text link
    Here we report the first spatially resolved spectroscopic study for the galaxy PHL293B using the high-resolution GTC/MEGARA IFU. PHL293B is a local, extremely metal-poor, high ionization galaxy. This makes PHL 293B an excellent analogue for galaxies in the early Universe. The MEGARA aperture (~12.5''x 11.3'') covers the entire PHL 293B main body and its far-reaching ionized gas. We created and discussed maps of all relevant emission lines, line ratios and physical-chemical properties of the ionized ISM. The narrow emission gas appears to be ionized mainly by massive stars according to the observed diganostic line ratios, regardless of the position across the MEGARA aperture. We detected low intensity broad emission components and blueshifted absorptions in the Balmer lines (Hα\alpha,Hβ\beta) which are located in the brightest zone of the galaxy ISM. A chemically homogeneity, across hundreds of parsecs, is observed in O/H. We take the oxygen abundance 12+log(O/H)=7.64 ±\pm 0.06 derived from the PHL293B integrated spectrum as the representative metallicity for the galaxy. Our IFU data reveal for the first time that the nebular HeII4686 emission from PHL 293B is spatially extended and coincident with the ionizing stellar cluster, and allow us to compute its absolute HeII ionizing photon flux. Wolf-Rayet bumps are not detected excluding therefore Wolf-Rayet stars as the main HeII excitation source. The origin of the nebular HeII4686 is discussed.Comment: 14 pages, 9 Figures, 3 Tables; Accepted for publication in MNRA

    Investigation into the effects of salt chemistry and SO2 on the crack initiation of CMSX-4 in static loading conditions

    Get PDF
    Although evidence exists of the potential impact of stress, co-incident with corrosive environments at high temperature, for single crystal turbine blades, the mechanism responsible is not fully understood. This work explores the effect of CaSO4, Na2SO4 and sea salt on the scale formation and crack initiation of CMSX-4 at 550°C in 50 ppm of SO2 and synthetic air under a static stress of 800 MPa. The cross-sectional analysis showed that the CaSO4 and the Na2SO4 salted specimens did not undergo a significant degree of corrosion degradation and no cracks were detected after 400 hours of exposure. However, sea salt caused significant degradation to the scale and cracks were detected by X-ray CT scanning after 400 hours of exposure. The findings from this study suggests that the sulfation of chlorine containing species in sea salt led to the formation, vaporisation and re-oxidation of metal chlorides and this mechanism was found to play a key role in the formation of a non-protective scale. An active oxidation mechanism has been proposed to interpret the results. In conclusion, it is hypothesized that due to the synergistic effect of stress and the formation of a non-protective scale, fast diffusion paths for sulfur, oxygen and chlorine ingress were formed. Further work is currently being undertaken to understand the effect of these species on the local embrittlement of CMSX-4 that ultimately led to the initiation of cracks in the specimen
    corecore