3 research outputs found

    Systemic Delivery of an Adjuvant CXCR4-CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy

    Get PDF
    Glioblastoma (GBM) is an aggressive primary brain cancer, with a 5 year survival of ∌5%. Challenges that hamper GBM therapeutic efficacy include (i) tumor heterogeneity, (ii) treatment resistance, (iii) immunosuppressive tumor microenvironment (TME), and (iv) the blood-brain barrier (BBB). The C-X-C motif chemokine ligand-12/C-X-C motif chemokine receptor-4 (CXCL12/CXCR4) signaling pathway is activated in GBM and is associated with tumor progression. Although the CXCR4 antagonist (AMD3100) has been proposed as an attractive anti-GBM therapeutic target, it has poor pharmacokinetic properties, and unfavorable bioavailability has hampered its clinical implementation. Thus, we developed synthetic protein nanoparticles (SPNPs) coated with the transcytotic peptide iRGD (AMD3100-SPNPs) to target the CXCL2/CXCR4 pathway in GBM via systemic delivery. We showed that AMD3100-SPNPs block CXCL12/CXCR4 signaling in three mouse and human GBM cell cultures in vitro and in a GBM mouse model in vivo. This results in (i) inhibition of GBM proliferation, (ii) reduced infiltration of CXCR4+ monocytic myeloid-derived suppressor cells (M-MDSCs) into the TME, (iii) restoration of BBB integrity, and (iv) induction of immunogenic cell death (ICD), sensitizing the tumor to radiotherapy and leading to anti-GBM immunity. Additionally, we showed that combining AMD3100-SPNPs with radiation led to long-term survival, with ∌60% of GBM tumor-bearing mice remaining tumor free after rechallenging with a second GBM in the contralateral hemisphere. This was due to a sustained anti-GBM immunological memory response that prevented tumor recurrence without additional treatment. In view of the potent ICD induction and reprogrammed tumor microenvironment, this SPNP-mediated strategy has a significant clinical translation applicability.Fil: Alghamri, Mahmoud S.. University Of Michigan Medical School; Estados UnidosFil: Banerjee, Kaushik. University Of Michigan Medical School; Estados UnidosFil: Mujeeb, Anzar A.. University Of Michigan Medical School; Estados UnidosFil: Mauser, Ava. University of Michigan; Estados UnidosFil: Taher, Ayman. University Of Michigan Medical School; Estados UnidosFil: Thalla, Rohit. University Of Michigan Medical School; Estados UnidosFil: McClellan, Brandon L.. University Of Michigan Medical School; Estados UnidosFil: Varela, Maria L.. University Of Michigan Medical School; Estados UnidosFil: Stamatovic, Svetlana M.. University Of Michigan Medical School; Estados UnidosFil: Martinez Revollar, Gabriela. University Of Michigan Medical School; Estados UnidosFil: Andjelkovic, Anuska V.. University Of Michigan Medical School; Estados UnidosFil: Gregory, Jason V.. University of Michigan; Estados UnidosFil: Kadiyala, Padma. University Of Michigan Medical School; Estados UnidosFil: Calinescu, Alexandra. University Of Michigan Medical School; Estados UnidosFil: JimĂ©nez, Jennifer A.. University of Michigan; Estados UnidosFil: Apfelbaum, April A.. University of Michigan; Estados UnidosFil: Lawlor, Elizabeth R.. University of Washington; Estados UnidosFil: Carney, Stephen. University of Michigan; Estados UnidosFil: Comba, Andrea. University Of Michigan Medical School; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Faisal, Syed Mohd. University Of Michigan Medical School; Estados UnidosFil: Barissi, Marcus. University Of Michigan Medical School; Estados UnidosFil: Edwards, Marta B.. University Of Michigan Medical School; Estados UnidosFil: Appelman, Henry. University Of Michigan Medical School; Estados UnidosFil: Sun, Yilun. Case Western Reserve University; Estados UnidosFil: Gan, Jingyao. University of Michigan; Estados UnidosFil: Ackermann, Rose. University of Michigan; Estados UnidosFil: Schwendeman, Anna. University of Michigan; Estados UnidosFil: Candolfi, Marianela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones BiomĂ©dicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones BiomĂ©dicas; ArgentinaFil: Olin, Michael R.. University of Minnesota; Estados UnidosFil: Lahann, Joerg. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. University of Michigan; Estados UnidosFil: Castro, Maria G.. University of Michigan; Estados Unido

    Modeling blood–brain barrier pathology in cerebrovascular disease in vitro: current and future paradigms

    Full text link
    Abstract The complexity of the blood–brain barrier (BBB) and neurovascular unit (NVU) was and still is a challenge to bridge. A highly selective, restrictive and dynamic barrier, formed at the interface of blood and brain, the BBB is a “gatekeeper” and guardian of brain homeostasis and it also acts as a “sensor” of pathological events in blood and brain. The majority of brain and cerebrovascular pathologies are associated with BBB dysfunction, where changes at the BBB can lead to or support disease development. Thus, an ultimate goal of BBB research is to develop competent and highly translational models to understand mechanisms of BBB/NVU pathology and enable discovery and development of therapeutic strategies to improve vascular health and for the efficient delivery of drugs. This review article focuses on the progress being made to model BBB injury in cerebrovascular diseases in vitro.http://deepblue.lib.umich.edu/bitstream/2027.42/173751/1/12987_2020_Article_202.pd
    corecore