88 research outputs found

    Factor 11 single-nucleotide variants in women with heavy menstrual bleeding

    Get PDF
    In a previous study it was shown that lower factor XI (FXI) levels in women with heavy menstrual bleeding (HMB). Our aim was to determine the single-nucleotide variants (SNVs) in the F11 gene in women with HMB. In addition, an extensive literature search was performed to determine the clinical significance of each SNV. Patients referred for HMB (PBAC-score >100) were included. With direct sequencing analysis of all 15 exons and flanking introns of the F11 gene, 29 different non-structural SNVs were detected in 49 patients with HMB. Interestingly, most of these SNVs have previously been associated with venous thrombosis instead of bleeding. These findings have not helped to elucidate the molecular basis of HMB. They also question the specificity of previously reported F11 variations in patients with thrombosis. More studies are needed to explain the lower FXI levels seen in patients with HMB

    Lab-on-chip for in situ analysis of nutrients in the deep sea

    Get PDF
    Microfluidic reagent-based nutrient sensors offer a promising technology to address the global undersampling of ocean chemistry but have so far not been shown to operate in the deep sea (>200 m). We report a new family of miniaturized lab-on-chip (LOC) colorimetric analyzers making in situ nitrate and phosphate measurements from the surface ocean to the deep sea (>4800 m). This new technology gives users a new low-cost, high-performance tool for measuring chemistry in hyperbaric environments. Using a combination of laboratory verification and field-based tests, we demonstrate that the analyzers are capable of in situ measurements during profiling that are comparable to laboratory-based analyses. The sensors feature a novel and efficient inertial-flow mixer that increases the mixing efficiency and reduces the back pressure and flushing time compared to a previously used serpentine mixing channel. Four separate replicate units of the nitrate and phosphate sensor were calibrated in the laboratory and showed an average limit of detection of 0.03 μM for nitrate and 0.016 μM for phosphate. Three on-chip optical absorption cell lengths provide a large linear range (to >750 μM (10.5 mg/L-N) for nitrate and >15 μM (0.47 mg/L-P) for phosphate), making the instruments suitable for typical concentrations in both ocean and freshwater aquatic environments. The LOC systems automatically collected a series of deep-sea nitrate and phosphate profiles in the northeast Atlantic while attached to a conductivity temperature depth (CTD) rosette, and the LOC nitrate sensor was attached to a PROVOR profiling float to conduct automated nitrate profiles in the Mediterranean Sea

    Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia

    Get PDF
    Mutations of the p53 tumour suppressor gene are infrequent at presentation of both acute myeloblastic leukaemia (AML) and acute lymphoblastic leukaemia (ALL), being found in between 5–10% of AML and 2–3% of ALL. Here we have studied the frequency of detection of p53 mutations at relapse of both AML and B-precursor ALL. In those patients with detectable mutations at relapse we investigated whether the mutation was detectable at presentation and was thus an early initiating event or whether it had arisen as a late event associated with relapse. Bone marrow samples from 55 adults and children with relapsed AML (n = 41) or ALL (n = 14) were analysed for p53 gene alterations by direct sequencing of exons 5–9. For samples where a p53 mutation was found at relapse, analysis of presentation samples was carried out by direct sequencing of the exon involved, or by allele-specific polymerase chain reaction (PCR) if the mutation could not be detected using direct sequencing. A p53 mutated gene was found at relapse in seven out of 55 cases. The frequency was higher in relapsed ALL (four out of 14 cases; 28.6%) compared to AML (three out of 41 cases; 7.3%). In five out of the seven cases presentation samples were available to study for the presence of the mutation. In two out of two AML patients the p53 mutation was detectable in the presentation sample by direct sequencing. In three ALL patients analysis of presentation material by direct sequencing showed a small mutant peak in one case, the other two being negative despite the sample analysed containing > 90% blast cells. However in both of these patients, the presence of p53 mutation was confirmed in the presentation sample using allele-specific PCR. In one of these patients the emergence of a subclone at relapse was confirmed by clonality analysis using IgH fingerprinting. Our results confirm that in ALL p53 mutations are present in a proportion of patients at relapse. Furthermore cells carrying the mutation are detectable at presentation in a minor clone suggesting that p53 mutations in ALL may be a mechanism contributing to disease relapse. © 1999 Cancer Research Campaig

    Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

    Get PDF
    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular ‘blueprint’; this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as ‘contrast agents’ if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging

    Ranking vocal fold model parameters by their influence on modal frequencies

    No full text
    The purpose of this study was to identify, using computational models, the vocal fold parameters which are most influential in determining the vibratory characteristics of the vocal folds. The sensitivities of vocal folds modal frequencies to variations model parameters were used to determine the most influential parameters. A detailed finite element model of the human vocal fold was created. The model was defined by eight geometric and six material parameters. The model included transitional boundary regions to idealize the complex physiological structure of real human subjects. Parameters were simultaneously varied over ranges representative of actual human vocal folds. Three separate statistical analysis techniques were used to identify the most and least sensitive model parameters with respect to modal frequency. The results from all three methods consistently suggest that a set of five parameters are most influential in determining the vibratory characteristics of the vocal folds

    Security in DevSecOps: Applying tools and machine learning to verification and monitoring steps

    No full text
    <p><i>This paper proposes a) IaC Scan Runner, an open-source solution developed in Python for inspecting a variety of state-of-the-art IaC languages in application design time and b) the run time anomaly detection tool called LOMOS. Both tools work in synergy and provide a valuable contribution to a DevSecOps tool set. </i></p&gt
    • …
    corecore