125 research outputs found

    A Low Percent Ethanol Method for Immobilizing Planarians

    Get PDF
    Planarians have recently become a popular model system for the study of adult stem cells, regeneration and polarity. The system is attractive for both undergraduate and graduate research labs, since planarian colonies are low cost and easy to maintain. Also in situ hybridization, immunofluorescence and RNA-interference (RNAi) gene knockdown techniques have been developed for planarian studies. However, imaging of live worms (particularly at high magnifications) is difficult because animals are strongly photophobic; they quickly move away from light sources and out of frame. The current methods available to inhibit movement in planarians include RNAi injection and exposure to cold temperatures. The former is labor and time intensive, while the latter precludes the use of many fluorescent reporter dyes. Here, we report a simple, inexpensive and reversible method to immobilize planarians for live imaging. Our data show that a short 1 hour treatment with 3% ethanol (EtOH) is sufficient to inhibit both the fine and gross movements of Schmidtea mediterranea planarians, of the typical size used (4–6 mm), with full recovery of movement within 3–4 hours. Importantly, EtOH treatment did not interfere with regeneration, even after repeated exposure, nor lyse epithelial cells (as assayed by H&E staining). We demonstrate that a short exposure to a low concentration of EtOH is a quick and effective method of immobilizing planarians, one that is easily adaptable to planarians of all sizes and will increase the accessibility of live imaging assays to planarian researchers

    Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide

    Get PDF
    Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.info:eu-repo/semantics/publishedVersio

    Tumor-Associated Macrophages (TAMs) Form an Interconnected Cellular Supportive Network in Anaplastic Thyroid Carcinoma

    Get PDF
    BACKGROUND: A relationship between the increased density of tumor-associated macrophages (TAMs) and decreased survival was recently reported in thyroid cancer patients. Among these tumors, anaplastic thyroid cancer (ATC) is one of the most aggressive solid tumors in humans. TAMs (type M2) have been recognized as promoting tumor growth. The purpose of our study was to analyze with immunohistochemistry the presence of TAMs in a series of 27 ATC. METHODOLOGY/PRINCIPAL FINDINGS: Several macrophages markers such as NADPH oxidase complex NOX2-p22phox, CD163 and CD 68 were used. Immunostainings showed that TAMs represent more than 50% of nucleated cells in all ATCs. Moreover, these markers allowed the identification of elongated thin ramified cytoplasmic extensions, bestowing a "microglia-like" appearance on these cells which we termed "Ramified TAMs" (RTAMs). In contrast, cancer cells were totally negative. Cellular stroma was highly simplified since apart from cancer cells and blood vessels, RTAMs were the only other cellular component. RTAMs were evenly distributed and intermingled with cancer cells, and were in direct contact with other RTAMs via their ramifications. Moreover, RTAMs displayed strong immunostaining for connexin Cx43. Long chains of interconnected RTAMs arose from perivascular clusters and were dispersed within the tumor parenchyma. When expressed, the glucose transporter Glut1 was found in RTAMs and blood vessels, but rarely in cancer cells. CONCLUSION: ATCs display a very dense network of interconnected RTAMs in direct contact with intermingled cancer cells. To our knowledge this is the first time that such a network is described in a malignant tumor. This network was found in all our studied cases and appeared specific to ATC, since it was not found in differentiated thyroid cancers specimens. Taken together, these results suggest that RTAMs network is directly related to the aggressiveness of the disease via metabolic and trophic functions which remain to be determined

    SMG-1 and mTORC1 Act Antagonistically to Regulate Response to Injury and Growth in Planarians

    Get PDF
    Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling

    Living knowledge of the healing plants: Ethno-phytotherapy in the Chepang communities from the Mid-Hills of Nepal

    Get PDF
    Contribution of indigenous knowledge in developing more effective drugs with minimum or no side effects helped to realise importance of study of indigenous remedies and the conservation of biological resources. This study analysed indigenous knowledge regarding medicinal plants use among the Chepang communities from ward number 3 and 4 of Shaktikhor Village Development Committee located in the central mid hills of Nepal. Data were collected in a one-year period and included interviews with traditional healers and elders. Chepangs are rich in knowledge regarding use of different plants and were using a total 219 plant parts from 115 species including one mushroom (belonging 55 families) for medicinal uses. Out of these, 75 species had 118 different new medicinal uses and 18 of them were not reported in any previous documents from Nepal as medicinal plants. Spiritual belief, economy and limitation of alternative health facilities were cause of continuity of people's dependency on traditional healers. Change in socio-economic activities not only threatened traditional knowledge but also resource base of the area. Enforcement of local institution in management of forest resources and legitimating traditional knowledge and practices could help to preserve indigenous knowledge
    • …
    corecore