4,702 research outputs found

    Analytical Models of the Performance of C-V2X Mode 4 Vehicular Communications

    Get PDF
    The C-V2X or LTE-V standard has been designed to support V2X (Vehicle to Everything) communications. The standard is an evolution of LTE, and it has been published by the 3GPP in Release 14. This new standard introduces the C-V2X or LTE-V Mode 4 that is specifically designed for V2V communications using the PC5 sidelink interface without any cellular infrastructure support. In Mode 4, vehicles autonomously select and manage their radio resources. Mode 4 is highly relevant since V2V safety applications cannot depend on the availability of infrastructure-based cellular coverage. This paper presents the first analytical models of the communication performance of C-V2X or LTE-V Mode 4. In particular, the paper presents analytical models for the average PDR (Packet Delivery Ratio) as a function of the distance between transmitter and receiver, and for the four different types of transmission errors that can be encountered in C-V2X Mode 4. The models are validated for a wide range of transmission parameters and traffic densities. To this aim, this study compares the results obtained with the analytical models to those obtained with a C-V2X Mode 4 simulator implemented over Veins

    Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region

    Get PDF
    The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich’s Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics.Fil: Faraj, Santiago Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Gonzalez-Lebrero, Rodolfo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Roman, Ernesto Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Santos, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin

    Online Context-based Object Recognition for Mobile Robots

    Get PDF
    This work proposes a robotic object recognition system that takes advantage of the contextual information latent in human-like environments in an online fashion. To fully leverage context, it is needed perceptual information from (at least) a portion of the scene containing the objects of interest, which could not be entirely covered by just an one-shot sensor observation. Information from a larger portion of the scenario could still be considered by progressively registering observations, but this approach experiences difficulties under some circumstances, e.g. limited and heavily demanded computational resources, dynamic environments, etc. Instead of this, the proposed recognition system relies on an anchoring process for the fast registration and propagation of objects’ features and locations beyond the current sensor frustum. In this way, the system builds a graphbased world model containing the objects in the scenario (both in the current and previously perceived shots), which is exploited by a Probabilistic Graphical Model (PGM) in order to leverage contextual information during recognition. We also propose a novel way to include the outcome of local object recognition methods in the PGM, which results in a decrease in the usually high CRF learning complexity. A demonstration of our proposal has been conducted employing a dataset captured by a mobile robot from restaurant-like settings, showing promising results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Twisted Nano-optics: Manipulating Light at the Nanoscale with Twisted Phonon Polaritonic Slabs

    Full text link
    Recent discoveries have shown that when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between their respective in-plane principal axes, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating polaritons, hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a polar vdW crystal (MoO3) supporting low-loss anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources (metal antennas). Our images reveal that under a critical angle the PhPs isofrequency curve (determining the PhPs momentum at a fixed frequency) undergoes a topological transition. Remarkably, at this angle, the propagation of PhPs is strongly guided along predetermined directions (canalization regime) with no geometrical spreading (diffraction-less). These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nano-imaging, (bio)-sensing, quantum applications and heat management

    Patterns and sequences of mobility

    Get PDF

    Determinants of post-school choices of young people: the workforce, university or vocational studies?

    Get PDF

    Labour market outcomes and educational and occupational pathways of young movers starting off in regional Victoria

    Get PDF
    corecore