48 research outputs found

    Competition between electron and phonon excitations in the scattering of nitrogen atoms and molecules off tungsten and silver surfaces

    Get PDF
    We investigate the role played by electron-hole pair and phonon excitations in the interaction of reactive gas molecules and atoms with metal surfaces. We present a theoretical framework that allows us to evaluate within a full-dimensional dynamics the combined contribution of both excitation mechanisms while the gas particle-surface interaction is described by an ab-initio potential energy surface. The model is applied to study energy dissipation in the scattering of N2_2 on W(110) and N on Ag(111). Our results show that phonon excitation is the dominant energy loss channel whereas electron-hole pair excitations represent a minor contribution. We substantiate that, even when the energy dissipated is quantitatively significant, important aspects of the scattering dynamics are well captured by the adiabatic approximation.Comment: 4pages and 3 figure

    Density functional theory calculations of nitrogen adsorption features on Fe(111) surfaces

    Get PDF
    Trabajo presentado al Workshop on Controlled Atomic Dynamics on Solid Surfaces: Atom an Molecular Manipulation, celebrado en Donostia-San sebastián (España) del 13 al 16 de Mayo de 2013.The interaction of nitrogen with metal surfaces has been one of the most popular topics of research in surface science for the last decades. This is due in part to the industrial importance of ammonia synthesis, typically obtained from nitrogen and hydrogen catalyzed over iron-based compounds. The rate limiting step in ammonia synthesis is the adsorption and dissociation of nitrogen on the catalyst surface. In Fe surfaces, the reactivity of the process depends on the face, the Fe(111) and Fe(211) surfaces being the most reactive ones. Although Fe(111) is the most reactive iron face for N2 dissociation, the dynamics of such process has not been analyzed in detail. In this work we present exhaustive calculations of the interaction of nitrogen atoms and molecules with the Fe(111) surface. These calculations set the basis for subsequent analysis of the N2 dissociation dynamics. We perform Density functional Theory spin-polarized calculations using VASP code. We first study the relaxation of the Fe(111) surface, which was a matter of controversy in the past. From here, we calculate the interaction energy of nitrogen atoms and molecules when approaching the Fe(111) surface. Our results show the preferred adsorption paths and sites for nitrogen adsorption, as well as the adsorption energies. We finally discuss the dynamics of the dissociation process and make the link with the high reactivity properties of the surface.Peer reviewe

    Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles

    Get PDF
    Under the terms of the Creative Commons Attribution (CC BY) license.Using ab initio molecular dynamics (AIMD) calculations, we investigate the role of the van der Waals (vdW) interaction in the dissociative adsorption of N2 on W(110). Hitherto, existing classical dynamics calculations performed on six-dimensional potential energy surfaces based on density functional theory (DFT), and the semi-local PW91 and RPBE [Hammer et al. Phys. Rev. B 59, 7413 (1999)] exchange-correlation functionals were unable to fully describe the dependence of the initial sticking coefficient on the molecular beam incidence conditions as found in experiments. N2 dissociation on W(110) was shown to be very sensitive not only to short molecule-surface distances but also to large distances where the vdW interaction, not included in semilocal-DFT, should dominate. In this work, we perform a systematic study on the dissociative adsorption using a selection of existing non-local functionals that include the vdW interaction (vdW-functionals). Clearly, the inclusion of the non-local correlation term contributes in all cases to correct the unrealistic energy barriers that were identified in the RPBE at large molecule-surface distances. Among the tested vdW-functionals, the original vdW-DF by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and the ulterior vdW-DF2 give also an adequate description of the N2 adsorption energy and energy barrier at the transition state, i.e., of the properties that are commonly used to verify the quality of any exchange-correlation functional. However, the results of our AIMD calculations, which are performed at different incidence conditions and hence extensively probe the multi-configurational potential energy surface of the system, do not seem as satisfactory as the preliminary static analysis suggested. When comparing the obtained dissociation probabilities with existing experimental data, none of the used vdW-functionals seems to provide altogether an adequate description of the N2/W(110) interaction at short and large distances.The authors acknowledge financial support by the Gobierno Vasco-UPV/EHU project IT756-13 and the Spanish Ministerio de Economía y Competitividad (Grant No. FIS2013-48286-C02-02-P).Peer Reviewe

    Surface Temperature Effects on the Dynamics of Nâ‚‚ Eley-Rideal Recombination on W(100)

    Get PDF
    Quasiclassical trajectories simulations are performed to study the influence of surface temperature on the dynamics of a N atom colliding a N-preadsorbed W(100) surface under normal incidence. A generalized Langevin surface oscillator scheme is used to allow energy transfer between the nitrogen atoms and the surface. The influence of the surface temperature on the N2 formed molecules via Eley-Rideal recombination is analyzed at T = 300, 800, and 1500 K. Ro-vibrational distributions of the N2 molecules are only slightly affected by the presence of the thermal bath whereas kinetic energy is rather strongly decreased when going from a static surface model to a moving surface one. In terms of reactivity, the moving surface model leads to an increase of atomic trapping cross section yielding to an increase of the so-called hot atoms population and a decrease of the direct Eley-Rideal cross section. The energy exchange between the surface and the nitrogen atoms is semi-quantitatively interpreted by a simple binary collision model

    Dynamical Reaction Pathways in Eley-Rideal Recombination of Nitrogen from W(100)

    Get PDF
    The scattering of atomic nitrogen over a N-pre-adsorbed W(100) surface is theoretically described in the case of normal incidence off a single adsorbate. Dynamical reaction mechanisms, in particular Eley-Rideal (ER) abstraction, are scrutinized in the 0.1-3.0 eV collision energy range and the influence of temperature on reactivity is considered between 300 and 1500 K. Dynamics simulations suggest that, though non-activated reaction pathways exist, the abstraction process exhibits a significant collision energy threshold (0.5 eV). Such a feature, which has not been reported so far in the literature, is the consequence of a repulsive interaction between the impinging and the pre-adsorbed nitrogens along with a strong attraction towards the tungsten atoms. Above threshold, the cross section for ER reaction is found one order of magnitude lower than the one for hot-atoms formation. The abstraction process involves the collision of the impinging atom with the surface prior to reaction but temperature effects, when modeled via a generalized Langevin oscillator model, do not affect significantly reactivity

    Non-adiabatic effects during the dissociative adsorption of O2 at Ag(111)? A first-principles divide and conquer study

    Get PDF
    We study the gas-surface dynamics of O2 at Ag(111) with the particular objective to unravel whether electronic non-adiabatic effects are contributing to the experimentally established inertness of the surface with respect to oxygen uptake. We employ a first-principles divide and conquer approach based on an extensive density-functional theory mapping of the adiabatic potential energy surface (PES) along the six O2 molecular degrees of freedom. Neural networks are subsequently used to interpolate this grid data to a continuous representation. The low computational cost with which forces are available from this PES representation allows then for a sufficiently large number of molecular dynamics trajectories to quantitatively determine the very low initial dissociative sticking coefficient at this surface. Already these adiabatic calculations yield dissociation probabilities close to the scattered experimental data. Our analysis shows that this low reactivity is governed by large energy barriers in excess of 1.1 eV very close to the surface. Unfortunately, these adiabatic PES characteristics render the dissociative sticking a rather insensitive quantity with respect to a potential spin or charge non-adiabaticity in the O2-Ag(111) interaction. We correspondingly attribute the remaining deviations between the computed and measured dissociation probabilities primarily to unresolved experimental issues with respect to surface imperfections.Comment: 18 pages including 6 figure

    Dynamical reaction pathways in Eley-Rideal recombination of nitrogen from W(100)

    Get PDF
    The scattering of atomic nitrogen over a N-pre-adsorbed W(100) surface is theoretically described in the case of normal incidence off a single adsorbate. Dynamical reaction mechanisms, in particular Eley-Rideal (ER) abstraction, are scrutinized in the 0.1-3.0 eV collision energy range and the influence of temperature on reactivity is considered between 300 and 1500 K. Dynamics simulations suggest that, though non-activated reaction pathways exist, the abstraction process exhibits a significant collision energy threshold (0.5 eV). Such a feature, which has not been reported so far in the literature, is the consequence of a repulsive interaction between the impinging and the pre-adsorbed nitrogens along with a strong attraction towards the tungsten atoms. Above threshold, the cross section for ER reaction is found one order of magnitude lower than the one for hot-atoms formation. The abstraction process involves the collision of the impinging atom with the surface prior to reaction but temperature effects, when modeled via a generalized Langevin oscillator model, do not affect significantly reactivity. © 2012 American Institute of Physics.E.Q.S. acknowledges the Bordeaux1-InSTEC inter university agreement and the French embassy in Cuba for fundings.Peer Reviewe

    Dynamics of the oxygen molecules scattered from the graphite (0001) surface and comparison with experimental data

    No full text
    A quasiclassical trajectory dynamics study of molecular oxygen colliding over a free of defects and clean graphite (0001) surface has been performed with a recently published density functional theory based flexible periodic London-Eyring-Polanyi-Sato potential energy surface (PES). Although the PES was mainly constructed for describing accurately the recombination of atomic oxygen over an O-preadsorbed surface, here we show that this PES is also reliable to study the scattering of O 2 over a graphite surface. Thus, several initial conditions have been explored: collision energies (0.2 eV ≥ E col ≥ 1.2 eV), incident angles (θ v = 0, 45°), surface temperatures (100 K ≥ T surf ≥ 900 K), and some rovibrational O 2 levels (v = 0, 1, 2 and j = 1, 17, 25). The calculated polar scattering angular distributions are in good agreement with the experimental ones in a wide range of explored conditions. Moreover, the comparison with hyperthermal experimental data, which was unclear in a previous work, has been finally clarified. The effect of O 2 (v, j) internal state on the scattering is very small. © 2012 American Chemical Society.This work was supported in part by the Spanish Ministry of Science and Innovation (Project CTQ2009-07647), by the Autonomous Government of Catalonia (Project 2009SGR1041), and by the European Commission research funding (Project FP7-SPACE-2009-242311).Peer Reviewe
    corecore