34 research outputs found

    Analysis of 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia

    Get PDF
    65Pregnancy in women with inherited thrombocytopenias is a major matter of concern as both the mothers and the newborns are potentially at risk of bleeding. However, medical management of this condition cannot be based on evidence because of the lack of consistent information in the literature. To advance knowledge on this matter, we performed a multicentric, retrospective study evaluating 339 pregnancies in 181 women with 13 different forms of inherited thrombocytopenia. Neither the degree of thrombocytopenia nor the severity of bleeding tendency worsened during pregnancy and the course of pregnancy did not differ from that of healthy subjects in terms of miscarriages, fetal bleeding and pre-term births. The degree of thrombocytopenia in the babies was similar to that in the mother. Only 7 of 156 affected newborns had delivery-related bleeding, but 2 of them died of cerebral hemorrhage. The frequency of delivery-related maternal bleeding ranged from 6.8% to 14.2% depending on the definition of abnormal blood loss, suggesting that the risk of abnormal blood loss was increased with respect to the general population. However, no mother died or had to undergo hysterectomy to arrest bleeding. The search for parameters predicting delivery-related bleeding in the mother suggested that hemorrhages requiring blood transfusion were more frequent in women with history of severe bleedings before pregnancy and with platelet count at delivery below 50 × 10(9)/L.openopenPatrizia Noris; Nicole Schlegel; Catherine Klersy; Paula G. Heller; Elisa Civaschi; Nuria Pujol-Moix; Fabrizio Fabris; Remi Favier; Paolo Gresele; Véronique Latger-Cannard; Adam Cuker; Paquita Nurden; Andreas Greinacher; Marco Cattaneo; Erica De Candia; Alessandro Pecci; Marie-Françoise Hurtaud-Roux; Ana C. Glembotsky; Eduardo Muñiz-Diaz; Maria Luigia Randi; Nathalie Trillot; Loredana Bury; Thomas Lecompte; Caterina Marconi; Anna Savoia; Carlo L. Balduini; Sophie Bayart; Anne Bauters; Schéhérazade Benabdallah-Guedira; Françoise Boehlen; Jeanne-Yvonne Borg; Roberta Bottega; James Bussel; Daniela De Rocco; Emmanuel de Maistre; Michela Faleschini; Emanuela Falcinelli; Silvia Ferrari; Alina Ferster; Tiziana Fierro; Dominique Fleury; Pierre Fontana; Chloé James; Francois Lanza; Véronique Le Cam Duchez; Giuseppe Loffredo; Pamela Magini; Dominique Martin-Coignard; Fanny Menard; Sandra Mercier; Annamaria Mezzasoma; Pietro Minuz; Ilaria Nichele; Lucia D. Notarangelo; Tommaso Pippucci; Gian Marco Podda; Catherine Pouymayou; Agnes Rigouzzo; Bruno Royer; Pierre Sie; Virginie Siguret; Catherine Trichet; Alessandra Tucci; Béatrice Saposnik; Dino VeneriPatrizia, Noris; Nicole, Schlegel; Catherine, Klersy; Paula G., Heller; Elisa, Civaschi; Nuria Pujol, Moix; Fabrizio, Fabris; Remi, Favier; Paolo, Gresele; Véronique Latger, Cannard; Adam, Cuker; Paquita, Nurden; Andreas, Greinacher; Marco, Cattaneo; Erica De, Candia; Alessandro, Pecci; Marie Françoise Hurtaud, Roux; Ana C., Glembotsky; Eduardo Muñiz, Diaz; Maria Luigia, Randi; Nathalie, Trillot; Loredana, Bury; Thomas, Lecompte; Caterina, Marconi; Savoia, Anna; Carlo L., Balduini; Sophie, Bayart; Anne, Bauters; Schéhérazade Benabdallah, Guedira; Françoise, Boehlen; Jeanne Yvonne, Borg; Bottega, Roberta; James, Bussel; DE ROCCO, Daniela; Emmanuel de, Maistre; Faleschini, Michela; Emanuela, Falcinelli; Silvia, Ferrari; Alina, Ferster; Tiziana, Fierro; Dominique, Fleury; Pierre, Fontana; Chloé, James; Francois, Lanza; Véronique Le Cam, Duchez; Giuseppe, Loffredo; Pamela, Magini; Dominique Martin, Coignard; Fanny, Menard; Sandra, Mercier; Annamaria, Mezzasoma; Pietro, Minuz; Ilaria, Nichele; Lucia D., Notarangelo; Tommaso, Pippucci; Gian Marco, Podda; Catherine, Pouymayou; Agnes, Rigouzzo; Bruno, Royer; Pierre, Sie; Virginie, Siguret; Catherine, Trichet; Alessandra, Tucci; Béatrice, Saposnik; Dino, Vener

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants.

    Get PDF
    To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified

    Cerebro-oculo-facio-skeletal syndrome: three additional cases with CSB mutations, new diagnostic criteria and an approach to investigation

    No full text
    Background: The cerebro-oculo-facio-skeletal syndrome (COFS syndrome) is an autosomal recessive disorder which was initially described in a specific aboriginal population from Manitoba. In recent years, COFS syndrome has been linked in this original population to a defective DNA repair pathway and to a homozygous mutation in the major gene underlying Cockayne syndrome (CSB). However, most reports of suspected COFS syndrome outside this population have not been confirmed at the molecular level, leading to considerable heterogeneity within the syndrome and confusing overlaps between COFS syndrome and other eye and brain disorders. Objective: To refine the delineation of the syndrome on genetically proven COFS cases. Methods: We report the exhaustive clinical, cellular and molecular data of three unrelated COFS patients with mutations in the CSB gene. Results: All three patients present the cardinal features of COFS syndrome including extreme microcephaly, congenital cataracts, facial dysmorphism and arthrogryposis. They also exhibit a predominantly postnatal growth failure, a severe psychomotor retardation, with axial hypotonia and peripheral hypertonia and neonatal feeding difficulties. Fibroblasts from the patients show the same DNA repair defect which can be complemented by transfection of the CSB wild-type cDNA. Five new mutations in the CSB gene have been identified in these patients. Conclusions: Our data indicate that COFS syndrome represents the most severe end of the Cockayne spectrum. New diagnostic criteria for COFS syndrome are proposed, based on our findings and on the few genetically proven COFS cases from the literature

    Wilms’ tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas

    No full text
    Nephroblastoma (Wilms’ tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith–Wiedemann, Simpson–Golabi–Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 gene. Subsequently, we identified a somatic PTCH1 nonsense mutation in the renal tumor of one patient. In addition, by array comparative genomic hybridization method, we analyzed the DNA extracted from the blood samples of nine patients with overgrowth syndrome and WT, but did not identify any deleterious chromosomal imbalances in these patients. These findings strongly suggest that patients with constitutional 9q22.3 microdeletion have an increased risk of WT, and that PTCH1 have a role in the pathogenesis of nephroblastomas

    Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis.

    No full text
    Hajdu-Cheney syndrome is a rare autosomal dominant skeletal disorder with facial anomalies, osteoporosis and acro-osteolysis. We sequenced the exomes of six unrelated individuals with this syndrome and identified heterozygous nonsense and frameshift mutations in NOTCH2 in five of them. All mutations cluster to the last coding exon of the gene, suggesting that the mutant mRNA products escape nonsense-mediated decay and that the resulting truncated NOTCH2 proteins act in a gain-of-function manner
    corecore