853 research outputs found

    557 GHz Observations of Water Vapor Outflows from VY CMa and W Hydrae

    Get PDF
    We report the first detection of thermal water vapor emission in the 557 GHz, 110−1011_{10} - 1_{01} ground state transition of ortho-H2_2O toward VY Canis Majoris. In observations obtained with the Submillimeter Wave Astronomy Satellite (SWAS), we measured a flux of ∌450\sim 450 Jy, in a spectrally resolved line centered on a velocity vLSR=25v_{LSR} = 25 km s−1^{-1} with a full width half maximum of ∌35\sim 35 km s−1^{-1}, somewhat dependent on the assumed line shape. We analyze the line shape in the context of three different radial outflow models for which we provide analytical expressions. We also detected a weaker 557 GHz emission line from W Hydrae. We find that these and other H2_2O emission line strengths scale as suggested by Zubko and Elitzur (2000).Comment: Astrophysical Journal Letters, accepte

    From Single-SNP to Wide-Locus: Genome-Wide Association Studies Identifying Functionally Related Genes and Intragenic Regions in Small Sample Studies

    Get PDF
    Background: Genome Wide Association Studies (GWAS) have had limited success when applied to complex diseases. Analyzing SNPs individually requires several large studies to integrate the often divergent results. In the presence of epistasis, multivariate approaches based on the linear model (including stepwise logistic regression) often have low sensitivity and generate an abundance of artifacts. Methods: Recent advances in distributed and parallel processing spurred methodological advances in non-parametric statistics. U-statistics for multivariate data (ÎŒStat) are not confounded by unrealistic assumptions (linearity, independence). Results: By incorporating knowledge about relationships between SNPs, ÎŒGWAS (GWAS based on ÎŒStat) can identify clusters of genes around biologically relevant pathways and pinpoint functionally relevant regions within these genes. Conclusion: With this computational biostatistics approach increasing power and guarding against artifacts, personalized medicine and comparative effectiveness will advance while subgroup analyses of Phase III trials can now suggest risk factors for adverse events and novel directions for drug development

    A new concept for the combination of optical interferometers and high-resolution spectrographs

    Full text link
    The combination of high spatial and spectral resolution in optical astronomy enables new observational approaches to many open problems in stellar and circumstellar astrophysics. However, constructing a high-resolution spectrograph for an interferometer is a costly and time-intensive undertaking. Our aim is to show that, by coupling existing high-resolution spectrographs to existing interferometers, one could observe in the domain of high spectral and spatial resolution, and avoid the construction of a new complex and expensive instrument. We investigate in this article the different challenges which arise from combining an interferometer with a high-resolution spectrograph. The requirements for the different sub-systems are determined, with special attention given to the problems of fringe tracking and dispersion. A concept study for the combination of the VLTI (Very Large Telescope Interferometer) with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other specific instrument pairings are discussed. We show that the proposed combination of an interferometer with a high-resolution spectrograph is indeed feasible with current technology, for a fraction of the cost of building a whole new spectrograph. The impact on the existing instruments and their ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio

    The Infrared Continuum Spectrum of VY CMa

    Get PDF
    We combine spectra of VY CMa obtained with the short- and long-wavelength spectrometers, SWS and LWS, on the Infrared Space Observatory to provide a first detailed continuum spectrum of this highly luminous star. The circumstellar dust cloud through which the star is observed is partially self-absorbing, which makes for complex computational modeling. We review previous work and comment on the range of uncertainties about the physical traits and mineralogical composition of the modeled disk. We show that these uncertainties significantly affect the modeling of the outflow and the estimated mass loss. In particular, we demonstrate that a variety of quite diverse models can produce good fits to the observed spectrum. If the outflow is steady, and the radiative repulsion on the dust cloud dominates the star's gravitational attraction, we show that the total dust mass-loss rate is ∌4×10−6M⊙\sim 4\times 10^{-6}M_{\odot} yr−1^{-1}, assuming that the star is at a distance of 1.5 kpc. Several indications, however, suggest that the outflow from the star may be spasmodic. We discuss this and other problems facing the construction of a physically coherent model of the dust cloud and a realistic mass-loss analysis

    Dynamical Opacity-Sampling Models of Mira Variables. II: Time-Dependent Atmospheric Structure and Observable Properties of 4 M-Type Model Series

    Get PDF
    We present 4 model series of the CODEX dynamical opacity-sampling models of Mira variables with solar abundances, designed to have parameters similar to oo Cet, R Leo and R Cas. We demonstrate that the CODEX models provide a clear physical basis for the molecular shell scenario used to explain interferometric observations of Mira variables. We show that these models generally provide a good match to photometry and interferometry at wavelengths between the near-infrared and the radio, and make the model outputs publicly available. These model also demonstrate that, in order to match visible and infrared observations, the Fe-poor silicate grains that form within 3 continuum radii must have small grain radii and therefore can not drive the winds from O-rich Mira variables.Comment: 16 pages, 18 figures, accepted for MNRA

    Near-Infrared interferometry of Eta Carinae with high spatial and spectral resolution using the VLTI and the AMBER instrument

    Get PDF
    We present the first NIR spectro-interferometry of the LBV Eta Carinae. The K band observations were performed with the AMBER instrument of the ESO Very Large Telescope Interferometer using three 8.2m Unit Telescopes with baselines from 42 to 89m. The aim of this work is to study the wavelength dependence of Eta Car's optically thick wind region with a high spatial resolution of 5 mas (11 AU) and high spectral resolution. The medium spectral resolution observations (R=1,500) were performed in the wavelength range around both the HeI 2.059 micron and the Br gamma 2.166 micron emission lines, the high spectral resolution observations (R=12,000) only in the Br gamma line region. In the K-band continuum, a diameter of 4.0 +/-0.2 mas (Gaussian FWHM, fit range 28-89m) was measured for Eta Car's optically thick wind region. If we fit Hillier et al. (2001) model visibilities to the observed AMBER visibilities, we obtain 50 % encircled-energy diameters of 4.2, 6.5 and 9.6mas in the 2.17 micron continuum, the HeI, and the Br gamma emission lines, respectively. In the continuum near the Br gamma line, an elongation along a position angle of 120+/-15 degrees was found, consistent with previous VLTI/VINCI measurements by van Boekel et al. (2003). We compare the measured visibilities with predictions of the radiative transfer model of Hillier et al. (2001), finding good agreement. Furthermore, we discuss the detectability of the hypothetical hot binary companion. For the interpretation of the non-zero differential and closure phases measured within the Br gamma line, we present a simple geometric model of an inclined, latitude-dependent wind zone. Our observations support theoretical models of anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass loss near the polar regions.Comment: 22 pages, 14 figures, 2 tables; A&A in pres

    Pressure Drives Rapid Burst-Like Coordinated Cellular Motion from 3D Cancer Aggregates

    Get PDF
    A key behavior observed during morphogenesis, wound healing, and cancer invasion is that of collective and coordinated cellular motion. Hence, understanding the different aspects of such coordinated migration is fundamental for describing and treating cancer and other pathological defects. In general, individual cells exert forces on their environment in order to move, and collective motion is coordinated by cell-cell adhesion-based forces. However, this notion ignores other mechanisms that encourage cellular movement, such as pressure differences. Here, using model tumors, it is found that increased pressure drove coordinated cellular motion independent of cell-cell adhesion by triggering cell swelling in a soft extracellular matrix (ECM). In the resulting phenotype, a rapid burst-like stream of cervical cancer cells emerged from 3D aggregates embedded in soft collagen matrices (0.5 mg mL(-1)). This fluid-like pushing mechanism, recorded within 8 h after embedding, shows high cell velocities and super-diffusive motion. Because the swelling in this model system critically depends on integrin-mediated cell-ECM adhesions and cellular contractility, the swelling is likely triggered by unsustained mechanotransduction, providing new evidence that pressure-driven effects must be considered to more completely understand the mechanical forces involved in cell and tissue movement as well as invasion

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    • 

    corecore