1,787 research outputs found
Development and Validation of a Model to Predict Severe Hospital-Acquired Acute Kidney Injury in Non-Critically Ill Patients
Lesión renal aguda; Registros electrónicos de datos de salud; Adquirido en el hospitalLesió renal aguda; Registres electrònics de dades de salut; Adquirit a l'HospitalAcute kidney injury; Electronic health data records; Hospital-acquiredBackground. The current models developed to predict hospital-acquired AKI (HA-AKI) in non-critically ill fail to identify the patients at risk of severe HA-AKI stage 3. Objective. To develop and externally validate a model to predict the individual probability of developing HA-AKI stage 3 through the integration of electronic health databases. Methods. Study set: 165,893 non-critically ill hospitalized patients. Using stepwise logistic regression analyses, including demography, chronic comorbidities, and exposure to risk factors prior to AKI detection, we developed a multivariate model to predict HA-AKI stage 3. This model was then externally validated in 43,569 non-critical patients admitted to the validation center. Results. The incidence of HA-AKI stage 3 in the study set was 0.6%. Among chronic comorbidities, the highest odds ratios were conferred by ischemic heart disease, ischemic cerebrovascular disease, chronic congestive heart failure, chronic obstructive pulmonary disease, chronic kidney disease and liver disease. Among acute complications, the highest odd ratios were associated with acute respiratory failure, major surgery and exposure to nephrotoxic drugs. The model showed an AUC of 0.906 (95% CI 0.904 to 0.908), a sensitivity of 89.1 (95% CI 87.0–91.0) and a specificity of 80.5 (95% CI 80.2–80.7) to predict HA-AKI stage 3, but tended to overestimate the risk at low-risk categories with an adequate goodness-of-fit for all risk categories (Chi2: 16.4, p: 0.034). In the validation set, incidence of HA-AKI stage 3 was 0.62%. The model showed an AUC of 0.861 (95% CI 0.859–0.863), a sensitivity of 83.0 (95% CI 80.5–85.3) and a specificity of 76.5 (95% CI 76.2–76.8) to predict HA-AKI stage 3 with an adequate goodness of fit for all risk categories (Chi2: 15.42, p: 0.052). Conclusions. Our study provides a model that can be used in clinical practice to obtain an accurate dynamic assessment of the individual risk of HA-AKI stage 3 along the hospital stay period in non-critically ill patients.This research received no external funding
Gene expression analyses determine two different subpopulations in KIT-negative GIST-like (KNGL) patients
Introduction: there are limited findings available on KIT-negative GIST-like (KNGL) population. Also, KIT expression may be post-transcriptionally regulated by miRNA221 and miRNA222. Hence, the aim of this study is to characterize KNGL population, by differential gene expression, and to analyze miRNA221/222 expression and their prognostic value in KNGL patients. Methods: KIT, PDGFRA, DOG1, IGF1R, MIR221 and MIR222 expression levels were determined by qRT-PCR. We also analyzed KIT and PDGFRA mutations, DOG1 expression, by immunohistochemistry, along with clinical and pathological data. Disease-free survival (DFS) and overall survival (OS) differences were calculated using Log-rank test. Results: hierarchical cluster analyses from gene expression data identified two groups: group I had KIT, DOG1 and PDGFRA overexpression and IGF1R underexpression and group II had overexpression of IGF1R and low expression of KIT, DOG1 and PDGFRA. Group II had a significant worse OS (p = 0.013) in all the series, and showed a tendency for worse OS (p = 0.11), when analyzed only the localized cases. MiRNA222 expression was significantly lower in a control subset of KIT-positive GIST (p < 0.001). OS was significantly worse in KNGL cases with higher expression of MIR221 (p = 0.028) or MIR222 (p = 0.014). Conclusions: we identified two distinct KNGL subsets, with a different prognostic value. Increased levels of miRNA221/222, which are associated with worse OS, could explain the absence of KIT protein expression of most KNGL tumors
Predictors of outcome in a Spanish cohort of patients with Fabry disease on enzyme replacement therapy
Fabry disease may be treated by enzyme replacement therapy (ERT), but the impact of chronic kidney disease (CKD) on the response to therapy remains unclear. The aim of the present study was to analyse the incidence and predictors of clinical events in patients on ERT. Study design: Multicentre retrospective observational analysis of patients diagnosed and treated with ERT for Fabry disease. The primary outcome was the first renal, neurological or cardiological events or death during a follow-up of 60 months (24-120). Results: In 69 patients (42 males, 27 females, mean age 44.6±13.7 years), at the end of follow-up, eGFR and the left ventricular septum thickness remained stable and the urinary albumin: creatinine ratio tended to decrease, but this decrease only approached significance in patients on agalsidase-beta (242-128mg/g (p=0.05). At the end of follow-up, 21 (30%) patients had suffered an incident clinical event: 6 renal, 2 neurological and 13 cardiological (including 3 deaths). Events were more frequent in patients with baseline eGFR≤60ml/min/1.73m2 (log Rank 12.423, p=0.001), and this remained significant even after excluding incident renal events (log Rank 4.086, p=0.043) and in males and in females. Lower baseline eGFR was associated with a 3- to 7-fold increase the risk of clinical events in different Cox models. Conclusions: GFR at the initiation of ERT is the main predictor of clinical events, both in males and in females, suggesting that start of ERT prior to the development of CKD is associated with better outcomes
Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials
[EN] Purpose—To perform a critical analysis on the impact of depth of response in newly diagnosed multiple myeloma (MM).
Patients and Methods—Data were analyzed from 609 patients who were enrolled in the GEM (Grupo Español de Mieloma) 2000 and GEM2005MENOS65 studies for transplant-eligible MM and the GEM2010MAS65 clinical trial for elderly patients with MM who had minimal residual disease (MRD) assessments 9 months after study enrollment. Median follow-up of the series was 71 months.
Results—Achievement of complete remission (CR) in the absence of MRD negativity was not associated with prolonged progression-free survival (PFS) and overall survival (OS) compared with near-CR or partial response (median PFS, 27, 27, and 29 months, respectively; median OS, 59, 64, and 65 months, respectively). MRD-negative status was strongly associated with prolonged PFS (median, 63 months; P < .001) and OS (median not reached; P < .001) overall and in subgroups defined by prior transplantation, disease stage, and cytogenetics, with prognostic superiority of MRD negativity versus CR particularly evident in patients with high-risk cytogenetics. Accordingly, Harrell C statistics showed higher discrimination for both PFS and OS in Cox models that included MRD (as opposed to CR) for response assessment. Superior MRD-negative rates after different induction regimens anticipated prolonged PFS. Among 34 MRD-negative patients with MM and a phenotypic pattern of bone marrow involvement similar to monoclonal gammopathy of undetermined significance at diagnosis, the probability of “operational cure” was high; median PFS was 12 years, and the 10-year OS rate was 94%.
Conclusion—Our results demonstrate that MRD-negative status surpasses the prognostic value of CR achievement for PFS and OS across the disease spectrum, regardless of the type of treatment or patient risk group. MRD negativity should be considered as one of the most relevant end points for transplant-eligible and elderly fit patients with MM
NGS-Based Molecular Karyotyping of Multiple Myeloma: Results from the GEM12 Clinical Trial
Simple Summary Multiple Myeloma (MM) is considered an incurable chronic disease, which prognosis depends on the presence of different genomic alterations. To accomplish a complete molecular diagnosis in a single essay, we have designed and validated a capture-based NGS approach to reliably identify pathogenic mutations (SNVs and indels), genomic alterations (CNVs and chromosomic translocations), and IGH rearrangements. We have observed a good correlation of the results obtained using our capture panel with data obtained by both FISH and WES techniques. In this study, the molecular classification performed using our approach was significantly associated with the stratification and outcome of MM patients. Additionally, this panel has been proven to detect specific IGH rearrangements that could be used as biomarkers in patient follow-ups through minimal residual disease (MRD) assays. In conclusion, we think that MM patients could benefit from the use of this capture-based NGS approach with a more accurate, single-essay molecular diagnosis. Next-generation sequencing (NGS) has greatly improved our ability to detect the genomic aberrations occurring in multiple myeloma (MM); however, its transfer to routine clinical labs and its validation in clinical trials remains to be established. We designed a capture-based NGS targeted panel to identify, in a single assay, known genetic alterations for the prognostic stratification of MM. The NGS panel was designed for the simultaneous study of single nucleotide and copy number variations, insertions and deletions, chromosomal translocations and V(D)J rearrangements. The panel was validated using a cohort of 149 MM patients enrolled in the GEM2012MENOS65 clinical trial. The results showed great global accuracy, with positive and negative predictive values close to 90% when compared with available data from fluorescence in situ hybridization and whole-exome sequencing. While the treatments used in the clinical trial showed high efficacy, patients defined as high-risk by the panel had shorter progression-free survival (p = 0.0015). As expected, the mutational status of TP53 was significant in predicting patient outcomes (p = 0.021). The NGS panel also efficiently detected clonal IGH rearrangements in 81% of patients. In conclusion, molecular karyotyping using a targeted NGS panel can identify relevant prognostic chromosomal abnormalities and translocations for the clinical management of MM patients
Depth of Response in Multiple Myeloma: A Pooled Analysis of Three PETHEMA/GEM Clinical Trials
Purpose
To perform a critical analysis on the impact of depth of response in newly diagnosed multiple
myeloma (MM).
Patients and Methods
Data were analyzed from 609 patients who were enrolled in the GEM (Grupo Español de Mieloma)
2000 and GEM2005MENOS65 studies for transplant-eligible MM and the GEM2010MAS65 clinical
trial for elderly patients with MM who had minimal residual disease (MRD) assessments 9 months
after study enrollment. Median follow-up of the series was 71 months.
Results
Achievement of complete remission (CR) in the absence of MRD negativity was not associated with
prolonged progression-free survival (PFS) and overall survival (OS) compared with near-CR or partial
response (median PFS, 27, 27, and 29 months, respectively; median OS, 59, 64, and 65 months,
respectively). MRD-negative status was strongly associated with prolonged PFS (median,
63 months; P , .001) and OS (median not reached; P , .001) overall and in subgroups defined by
prior transplantation, disease stage, and cytogenetics, with prognostic superiority of MRD negativity
versus CR particularly evident in patients with high-risk cytogenetics. Accordingly, Harrell C statistics
showed higher discrimination for both PFS and OS in Cox models that included MRD (as opposed to
CR) for response assessment. Superior MRD-negative rates after different induction regimens
anticipated prolonged PFS. Among 34 MRD-negative patients withMMand a phenotypic pattern of
bone marrow involvement similar to monoclonal gammopathy of undetermined significance at
diagnosis, the probability of “operational cure” was high; median PFS was 12 years, and the 10-year
OS rate was 94%.
Conclusion
Our results demonstrate that MRD-negative status surpasses the prognostic value of CR
achievement for PFS and OS across the disease spectrum, regardless of the type of treatment or
patient risk group. MRD negativity should be considered as one of the most relevant end points for
transplant-eligible and elderly fit patients with MM
Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
Background Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.Methods Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.Results Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.Conclusions During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis
Minimal residual disease monitoring and immune profiling using second generation flow cytometry in elderly multiple myeloma
The value of minimal residual disease (MRD) in multiple myeloma (MM) has been more frequently investigated in transplant-eligible than elderly patients. Since an optimal balance between treatment efficacy and toxicity is of utmost importance in elderly MM, sensitive MRD monitoring might be particularly valuable in this patient population. Here, we used 2nd generation 8-color multiparameter-flow-cytometry (MFC) to monitor MRD in 162 transplant-ineligible MM patients enrolled in the PETHEMA/GEM2010MAS65 study, The transition from 1st to 2nd generation MFC resulted in increased sensitivity, and allowed to identify three patient groups according to MRD levels: MRD-negative (75-years (HR:4.8; P<.001), and those with high-risk cytogenetics (HR:12.6; P=.01). Using 2nd generation MFC, immune profiling concomitant to MRD monitoring also contributed to identify patients with poor, intermediate and favorable outcome (25%, 61% and 100% OS at 3-years; P=.01); the later patients being characterized by an increased compartment of mature B-cells. Our results show that similarly to transplant-candidates, MRD monitoring is one of the most relevant prognostic factors in elderly MM, irrespectively of patients’ age and cytogenetic risk
CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative
Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA
Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis
- …