2,168 research outputs found

    Name, Image, and Likeness (NILs): What Impact Will NILs Have on Students in the Classroom?

    Get PDF
    As a result of several national court rulings, the NCAA revised its bylaws regarding student-athletes. Student-athletes are now being paid money by third-party interests for use of their name, image, and or likeness (NILs) in an endeavor to sell products, services, and student brands. Students advertise their NILs on social media and contract with local, state, and national vendors to endorse products. It is certainly beneficial for student-athletes, parents, families, and even local communities to profit from their work and athleticism. However, important concerns have been left out of the NILs discussion by the academy, the media, the NCAA, and academic journals. This article examines the impact NCAA rule changes have on college students in the classroom as well as the impact on faculty and administration. The probability exists of increased cheating, gender bias, and pressure on instructors who will be caught in the middle between money and grades

    Strong light-matter coupling in bulk GaN-microcavities with double dielectric mirrors fabricated by two different methods

    Get PDF
    Two routes for the fabrication of bulk GaN microcavities embedded between two dielectric mirrors are described, and the optical properties of the microcavities thus obtained are compared. In both cases, the GaN active layer is grown by molecular beam epitaxy on (111) Si, allowing use of selective etching to remove the substrate. In the first case, a three period Al0.2Ga0.8N / AlN Bragg mirror followed by a lambda/2 GaN cavity are grown directly on the Si. In the second case, a crack-free 2,mu m thick GaN layer is grown, and progressively thinned to a final thickness of lambda. Both devices work in the strong coupling regime at low temperature, as evidenced by angle-dependent reflectivity or transmission experiments. However, strong light-matter coupling in emission at room temperature is observed only for the second one. This is related to the poor optoelectronic quality of the active layer of the first device, due to its growth only 250 nm above the Si substrate and its related high defect density. The reflectivity spectra of the microcavities are well accounted for by using transfer matrix calculations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3477450

    Methylthiolate-induced reconstruction of Ag(1 1 1): A medium energy ion scattering study

    Get PDF
    Medium energy ion scattering (MEIS), using 100 keV H+ incident ions, has been used to investigate the structure of the Ag(1 1 1)(√7 × √7)R19° –CH3S surface phase. The results provide the first direct evidence that this structure does involve substantial reconstruction of the Ag surface layer. The measured absolute scattered ion yields and blocking curves are in generally good agreement with a specific structural model of the surface based on a reconstructed layer containing 3/7 ML Ag atoms, previously suggested on the basis of scanning tunnelling microscopy (STM) and normal incidence X-ray standing wave (NIXSW) studies. However, the MEIS data indicate that any rumpling of the thiolate layer, is small, and probably 0.2 Å. This value is smaller than the amplitude suggested in the STM and NIXSW studies, but could be entirely consistent with the earlier experimental data

    Monomeric PcrA helicase processively unwinds plasmid lengths of DNA in the presence of the initiator protein RepD

    Get PDF
    The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy. Visualization was achieved using a fluorescent single-stranded DNA-binding protein. The single-molecule data show that PcrA, in combination with RepD, can unwind plasmid lengths of DNA in a single run, and that PcrA is active as a monomer. Although the average rate of unwinding was similar in single-molecule and bulk solution assays, the single-molecule experiments revealed a wide distribution of unwinding speeds by different molecules. The average rate of unwinding was several-fold slower than the PcrA translocation rate on single-stranded DNA, suggesting that DNA unwinding may proceed via a partially passive mechanism. However, the fastest dsDNA unwinding rates measured in the single-molecule unwinding assays approached the PcrA translocation speed measured on ssDNA

    In vitro selectivity, in vivo biodistribution and tumour uptake of annexin V radiolabelled with a positron emitting radioisotope

    Get PDF
    The availability of a noninvasive method to detect and quantify apoptosis in tumours will enable tumour response to several cancer therapies to be assessed. We have synthesised two radiotracers, annexin V and the N-succinimidyl-3-iodobenzoic acid (SIB) derivative of annexin V, labelled with radio-iodine (124I and 125I) and provided proof of the concept by assessing specific binding and biodistribution of these probes to apoptotic cells and tumours. We have also assessed the tumour uptake of [124I]annexin V in a mouse model of apoptosis. RIF-1 cells induced to undergo apoptosis in vitro showed a drug concentration-dependent increased binding of [125I]annexin V and [125I]SIB–annexin V. In the same model system, there was an increase in terminal deoxynucleotidyl transferase-mediated nick end labelling (TUNEL)-positive cells and a decrease in clonogenic survival. Radiotracer binding was completely inhibited by preincubation with unlabelled annexin V. In RIF-1 tumour-bearing mice, rapid distribution of [125I]SIB–annexin V-derived radioactivity to kidneys was observed and the radiotracer accumulated in urine. The binding of [125I]SIB–annexin V to RIF-1 tumours increased by 2.3-fold at 48 h after a single intraperitoneal injection of 5-fluorouracil (165 mg kg−1 body weight), compared to a 4.4-fold increase in TUNEL-positive cells measured by immunostaining. Positron emission tomography images with both radiotracers demonstrated intense localisation in the kidneys and bladder. Unlike [124I]SIB–annexin V, [124I]annexin V also showed localisation in the thyroid region presumably due to deiodination of the radiolabel. [124I]SIB–annexin V is an attractive candidate for in vivo imaging of apoptosis by PET

    Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics

    Full text link
    The atmospheric greenhouse effect, an idea that many authors trace back to the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896), and which is still supported in global climatology, essentially describes a fictitious mechanism, in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature it is taken for granted that such mechanism is real and stands on a firm scientific foundation. In this paper the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, (c) the frequently mentioned difference of 33 degrees Celsius is a meaningless number calculated wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the assumption of a radiative balance is unphysical, (f) thermal conductivity and friction must not be set to zero, the atmospheric greenhouse conjecture is falsified.Comment: 115 pages, 32 figures, 13 tables (some typos corrected

    First LIGO search for gravitational wave bursts from cosmic (super)strings

    Get PDF
    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Search for Gravitational Wave Bursts from Soft Gamma Repeaters

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first search sensitive to neutron star f-modes, usually considered the most efficient GW emitting modes. We find no evidence of GWs associated with any SGR burst in a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190 lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first year of LIGO's fifth science run. GW strain upper limits and model-dependent GW emission energy upper limits are estimated for individual bursts using a variety of simulated waveforms. The unprecedented sensitivity of the detectors allows us to set the most stringent limits on transient GW amplitudes published to date. We find upper limit estimates on the model-dependent isotropic GW emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52 erg depending on waveform type, detector antenna factors and noise characteristics at the time of the burst. These upper limits are within the theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
    • …
    corecore