28 research outputs found

    Multiple resource limitations explain biomass-precipitation relationships in grasslands

    Get PDF
    Interannual variability in grassland primary production is strongly driven by precipitation, nutrient availability and herbivory, but there is no general consensus on the mechanisms linking these variables. If grassland biomass is limited by the single most limiting resource at a given time, then we expect that nutrient addition will not affect biomass production at arid sites. We conducted a distributed experiment manipulating nutrients and herbivores at 44 grassland sites in 8 regions around the world, spanning a broad range in aridity. We estimated the effects of 5-11 years of nutrient addition and herbivore exclusion treatments on precipitation sensitivity of biomass (proportional change in biomass relative to proportional change in rainfall among years), and the biomass in the driest year (to measure treatment effects when water was most limiting) at each site. Grazer exclusion did not interact with nutrients to influence driest year biomass or sensitivity. Nutrient addition increased driest year biomass by 74% and sensitivity by 0.12 (proportional units), and that effect did not change across the range of aridity spanned by our sites. Grazer exclusion did not interact with nutrients to influence sensitivity or driest year biomass. At almost half of our sites, the previous year\u27s rainfall explained as much variation in biomass as current year precipitation. Overall, our distributed fertilization experiment detected co-limitation between nutrients and water governing grasslands, with biomass sensitivity to precipitation being limited by nutrient availability irrespective of site aridity and herbivory. Our findings refute the classical ideas that grassland plant performance is limited by the single most limiting resource at a site. This suggests that nutrient eutrophication will destabilize grassland ecosystems through increased sensitivity to precipitation variation

    Impact of the first COVID lockdown on accident- and injury-related pediatric intensive care admissions in Germany - a multicenter study

    Get PDF
    Children’s and adolescents’ lives drastically changed during COVID lockdowns worldwide. To compare accident- and injury-related admissions to pediatric intensive care units (PICU) during the first German COVID lockdown with previous years, we conducted a retrospective multicenter study among 37 PICUs (21.5% of German PICU capacities). A total of 1444 admissions after accidents or injuries during the first lockdown period and matched periods of 2017–2019 were reported and standardized morbidity ratios (SMR) were calculated. Total PICU admissions due to accidents/injuries declined from an average of 366 to 346 (SMR 0.95 (CI 0.85–1.05)). Admissions with trauma increased from 196 to 212 (1.07 (0.93–1.23). Traffic accidents and school/kindergarten accidents decreased (0.77 (0.57–1.02 and 0.26 (0.05–0.75)), whereas household and leisure accidents increased (1.33 (1.06–1.66) and 1.34 (1.06–1.67)). Less neurosurgeries and more visceral surgeries were performed (0.69 (0.38–1.16) and 2.09 (1.19–3.39)). Non-accidental non-suicidal injuries declined (0.73 (0.42–1.17)). Suicide attempts increased in adolescent boys (1.38 (0.51–3.02)), but decreased in adolescent girls (0.56 (0.32–0.79)). In summary, changed trauma mechanisms entailed different surgeries compared to previous years. We found no evidence for an increase in child abuse cases requiring intensive care. The increase in suicide attempts among boys demands investigation

    Temporal rarity is a better predictor of local extinction risk than spatial rarity

    Get PDF
    Spatial rarity is often used to predict extinction risk, but rarity can also occur temporally. Perhaps more relevant in the context of global change is whether a species is core to a community (persistent) or transient (intermittently present), with transient species often susceptible to human activities that reduce niche space. Using 5–12 yr of data on 1,447 plant species from 49 grasslands on five continents, we show that local abundance and species persistence under ambient conditions are both effective predictors of local extinction risk following experimental exclusion of grazers or addition of nutrients; persistence was a more powerful predictor than local abundance. While perturbations increased the risk of exclusion for low persistence and abundance species, transient but abundant species were also highly likely to be excluded from a perturbed plot relative to ambient conditions. Moreover, low persistence and low abundance species that were not excluded from perturbed plots tended to have a modest increase in abundance following perturbance. Last, even core species with high abundances had large decreases in persistence and increased losses in perturbed plots, threatening the long-term stability of these grasslands. Our results demonstrate that expanding the concept of rarity to include temporal dynamics, in addition to local abundance, more effectively predicts extinction risk in response to environmental change than either rarity axis predicts alone.Fil: Wilfahrt, Peter A.. University of Minnesota; Estados UnidosFil: Asmus, Ashley L.. University of Minnesota; Estados UnidosFil: Seabloom, Eric. University of Minnesota; Estados UnidosFil: Henning, Jeremiah A.. University of Minnesota; Estados UnidosFil: Adler, Peter. State University of Utah; Estados UnidosFil: Arnillas, Carlos A.. University of Toronto Scarborough; CanadáFil: Bakker, Jonathan. University of Washington; Estados UnidosFil: Biederman, Lori. University of Iowa; Estados UnidosFil: Brudvig, Lars A.. Michigan State University; Estados UnidosFil: Cadotte, Marc W.. University of Toronto Scarborough; CanadáFil: Daleo, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Eskelinen, Anu. German Centre for Integrative Biodiversity Research; AlemaniaFil: Firn, Jennifer. University of Queensland; AustraliaFil: Harpole, W. Stanley. German Centre for Integrative Biodiversity Research; Alemania. Helmholtz Centre for Environmental Research; Alemania. Martin Luther University Halle-Wittenberg; AlemaniaFil: Hautier, Yann. Utrecht University; Países BajosFil: Kirkman, Kevin P.. University of KwaZulu-Natal; SudáfricaFil: Komatsu, Kimberly J.. Smithsonian Environmental Research Center; Estados UnidosFil: Laungani, Ramesh. Doane University; Estados UnidosFil: MacDougall, Andrew. University of Guelph; CanadáFil: McCulley, Rebecca L.. University of Kentucky; Estados UnidosFil: Moore, Joslin L.. Monash University; AustraliaFil: Morgan, John W.. La Trobe University; AustraliaFil: Mortensen, Brent. Benedictine College; Estados UnidosFil: Ochoa Hueso, Raul. Universidad de Cádiz; EspañaFil: Ohlert, Timothy. University of New Mexico; Estados UnidosFil: Power, Sally A.. University of Western Sydney; AustraliaFil: Price, Jodi. Charles Sturt University; AustraliaFil: Risch, Anita C.. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Schuetz, Martin. Swiss Federal Institute for Forest, Snow and Landscape Research; SuizaFil: Shoemaker, Lauren. University of Wyoming; Estados UnidosFil: Stevens, Carly. Lancaster University; Reino UnidoFil: Strauss, Alexander T.. University of Minnesota; Estados Unidos. University of Georgia; Estados UnidosFil: Tognetti, Pedro Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Virtanen, Risto. University of Oulu; FinlandiaFil: Borer, Elizabeth. University of Minnesota; Estados Unido

    Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time

    Get PDF
    Human activities are enriching many of Earth’s ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5–11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short-term experiments may underestimate the long-term nutrient enrichment effects on global grassland ecosystems

    Multiple resource limitations explain biomass-precipitation relationships in grasslands

    Get PDF
    Interannual variability in grassland primary production is strongly driven by precipitation, nutrient availability and herbivory, but there is no general consensus on the mechanisms linking these variables. If grassland biomass is limited by the single most limiting resource at a given time, then we expect that nutrient addition will not affect biomass production at arid sites. We conducted a distributed experiment manipulating nutrients and herbivores at 44 grassland sites in 8 regions around the world, spanning a broad range in aridity. We estimated the effects of 5-11 years of nutrient addition and herbivore exclusion treatments on precipitation sensitivity of biomass (proportional change in biomass relative to proportional change in rainfall among years), and the biomass in the driest year (to measure treatment effects when water was most limiting) at each site. Grazer exclusion did not interact with nutrients to influence driest year biomass or sensitivity. Nutrient addition increased driest year biomass by 74% and sensitivity by 0.12 (proportional units), and that effect did not change across the range of aridity spanned by our sites. Grazer exclusion did not interact with nutrients to influence sensitivity or driest year biomass. At almost half of our sites, the previous year's rainfall explained as much variation in biomass as current year precipitation. Overall, our distributed fertilization experiment detected co-limitation between nutrients and water governing grasslands, with biomass sensitivity to precipitation being limited by nutrient availability irrespective of site aridity and herbivory. Our findings refute the classical ideas that grassland plant performance is limited by the single most limiting resource at a site. This suggests that nutrient eutrophication will destabilize grassland ecosystems through increased sensitivity to precipitation variation.This preprint is made available through bioRxiv at doi:10.1101/2021.03.09.434527.</p

    Soil properties as key predictors of global grassland production:Have we overlooked micronutrients?

    Get PDF
    Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients

    Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?

    Get PDF
    Fertilisation experiments have demonstrated that nutrient availability is a key determinant of biomass production and carbon sequestration in grasslands. However, the influence of nutrients in explaining spatial variation in grassland biomass production has rarely been assessed. Using a global dataset comprising 72 sites on six continents, we investigated which of 16 soil factors that shape nutrient availability associate most strongly with variation in grassland aboveground biomass. Climate and N deposition were also considered. Based on theory-driven structural equation modelling, we found that soil micronutrients (particularly Zn and Fe) were important predictors of biomass and, together with soil physicochemical properties and C:N, they explained more unique variation (32%) than climate and N deposition (24%). However, the association between micronutrients and biomass was absent in grasslands limited by NP. These results highlight soil properties as key predictors of global grassland biomass production and point to serial co-limitation by NP and micronutrients.This article is published as Radujković, Dajana, Erik Verbruggen, Eric W. Seabloom, Michael Bahn, Lori A. Biederman, Elizabeth T. Borer, Elizabeth H. Boughton et al. "Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?." Ecology Letters 24 (2021): 2713-2725. doi:10.1111/ele.13894. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted
    corecore