233 research outputs found

    Real-life management of patients with breakthrough cancer pain caused by bone metastases in Spain

    Get PDF
    Purpose: We aimed to explore the characteristics, and real-life therapeutic management of patients with breakthrough cancer pain (BTcP) caused by bone metastases in Spain, and to evaluate physicians' opinion of and satisfaction with prescribed BTcP therapy. Participants and methods: For the purposes of this study, an ad-hoc questionnaire was developed consisting of two domains: a) organizational aspects and care standards; b) clinical and treatment variables of bone metastatic BTcP patients. In addition, physicians' satisfaction with their prescribed BTcP therapy was assessed. Specialists collected data from up to five patients receiving treatment for BTcP caused by bone metastasis, all patients gave their consent to participate prior to inclusion. Results: A total of 103 cancer pain specialists (radiation oncologists [38.8%], pain specialists [33.0%], and palliative care (PC) specialists [21.4%]) were polled, and data on 386 BTcP patients with bone metastatic disease were collected. Only 33% of the specialists had implemented specific protocols for BTcP management, and 19.4% had established referral protocols for this group of patients. Half of all participants (50.5%) address quality of life and quality of care in their patients; however, only 27.0% did so from the patient's perspective, as they should do. Most patients had multiple metastases and were prescribed rapid-onset fentanyl preparations (71.2%), followed by immediate-release morphine (9.3%) for the treatment of BTcP. Rapid-onset fentanyl was prescribed more often in PC units (79.0%) than in pain units (75.9%) and radiation oncology units (61.1%) (p<0.01). Furthermore, most physicians (71.8%) were satisfied with the BTcP therapy prescribed. Conclusions: Our results demonstrate the need for routine assessment of quality of life in patients with bone BTcP. These findings also underscore the necessity for a multidisciplinary therapeutic strategy for breakthrough pain in clinical practice in Spain

    Quantum gate algorithm for reference-guided DNA sequence alignment

    Full text link
    Reference-guided DNA sequencing and alignment is an important process in computational molecular biology. The amount of DNA data grows very fast, and many new genomes are waiting to be sequenced while millions of private genomes need to be re-sequenced. Each human genome has 3.2 B base pairs, and each one could be stored with 2 bits of information, so one human genome would take 6.4 B bits or about 760 MB of storage (National Institute of General Medical Sciences). Today most powerful tensor processing units cannot handle the volume of DNA data necessitating a major leap in computing power. It is, therefore, important to investigate the usefulness of quantum computers in genomic data analysis, especially in DNA sequence alignment. Quantum computers are expected to be involved in DNA sequencing, initially as parts of classical systems, acting as quantum accelerators. The number of available qubits is increasing annually, and future quantum computers could conduct DNA sequencing, taking the place of classical computing systems. We present a novel quantum algorithm for reference-guided DNA sequence alignment modeled with gate-based quantum computing. The algorithm is scalable, can be integrated into existing classical DNA sequencing systems and is intentionally structured to limit computational errors. The quantum algorithm has been tested using the quantum processing units and simulators provided by IBM Quantum, and its correctness has been confirmed.Comment: 19 pages, 13 figure

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.306810.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.57150.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.550.21+0.241.55^{+0.24}_{-0.21} RR_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P2P\lesssim 2 days, planets with a radius Rp2RR_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2R\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2R\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 RR_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    The IFMIF-DONES Project: Design Status and Main Achievements Within the EUROfusion FP8 Work Programme

    Get PDF
    International Fusion Materials Irradiation Facility-DEMO-Oriented NEutron Source (IFMIF-DONES) is a high-intensity neutron irradiation facility for qualification of fusion reactor materials, which is being designed as part of the European roadmap to fusion-generated electricity. Its main purpose is to study the behavior of materials properties under irradiation in a neutron flux able to simulate the same effects in terms of relevant nuclear responses as those expected in the first wall of the DEMO reactor which is envisaged to follow ITER. It is thus a key facility to support the design, licensing and safe operation of DEMO as well as of the fusion power plants that will be developed afterwards. The start of its construction is foreseen in the next few years. In this contribution, an overview of the IFMIF-DONES neutron source is presented together with a snapshot of the current engineering design status and of the relevant key results achieved within the EUROfusion Work Package Early Neutron Source (WPENS) as part of the 2014–2020 EURATOM Research and Training Programme, complementary to the EU Horizon 2020 Framework Programme (FP8). Moreover, some information on the future developments of the project are given

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    Overview of IFMIF-DONES diagnostics: Requirements and techniques

    Get PDF
    The IFMIF-DONES Facility is a unique first-class scientific infrastructure whose construction is foreseen in Granada, Spain, in the coming years. Strong integration efforts are being made at the current project phase aiming at harmonizing the ongoing design of the different and complex Systems of the facility. The consolidation of the Diagnostics and Instrumentation, transversal across many of them, is a key element of this purpose. A top-down strategy is proposed for a systematic Diagnostics Review and Requirement definition, putting emphasis in the one-of-a-kind instruments necessary by the operational particularities of some of the Systems, as well as to the harsh environment that they shall survive. In addition, other transversal aspects such as the ones related to Safety and Machine Protection and their respective requirements shall be also considered. The goal is therefore to advance further and solidly in the respective designs, identify problems in advance, and steer the Diagnostics development and validation campaigns that will be required. The present work provides an overview of this integration strategy as well as a description of some of the most challenging Diagnostics and Instruments within the facility, including several proposed techniques currently under study
    corecore