54 research outputs found

    On edge states in semi-infinite quantum Hall systems

    Get PDF
    We consider an electron in two dimensions submitted to a magnetic field and to the potential of impurities. We show that when the electron is confined to a half-space by a planar wall described by a smooth increasing potential, the total Hamiltonian necessarily has a continuous spectrum in some intervals in between the Landau levels provided that both the amplitude and spatial variation of the impurity potential are sufficiently weak. The spatial decay of the impurity potential is not needed. In particular, this proves the occurrence of edge states in semi-infinite quantum Hall systems

    Diamagnetic currents

    Get PDF
    Abstract We study the diamagnetic surface currents of particles in thermal equilibrium submitted to a constant magnetic field. The current density of independent electrons with Boltzmann (respectively Fermi) statistics has a gaussian (respectively exponential) bound for its fall off into the bulk. For a system of interacting particles at low activity with Boltzmann statistics, the current density is localized near to the boundary and integrable when the two-body potential decays as |x|–agr, agr >4, agr>4, in three dimensions. In all cases, the integral of the current density is independent of the nature of the confining wall and correctly related to the bulk magnetisation. The results hold for hard and soft walls and all field strength. The analysis relies on the Feynman-Kac-Ito representation of the Gibbs state and on specific properties of the Brownian bridge process. Partially supported by the Swiss National Foundation for Scienc

    Long Cycles in a Perturbed Mean Field Model of a Boson Gas

    Get PDF
    In this paper we give a precise mathematical formulation of the relation between Bose condensation and long cycles and prove its validity for the perturbed mean field model of a Bose gas. We decompose the total density ρ=ρshort+ρlong\rho=\rho_{{\rm short}}+\rho_{{\rm long}} into the number density of particles belonging to cycles of finite length (ρshort\rho_{{\rm short}}) and to infinitely long cycles (ρlong\rho_{{\rm long}}) in the thermodynamic limit. For this model we prove that when there is Bose condensation, ρlong\rho_{{\rm long}} is different from zero and identical to the condensate density. This is achieved through an application of the theory of large deviations. We discuss the possible equivalence of ρlong0\rho_{{\rm long}}\neq 0 with off-diagonal long range order and winding paths that occur in the path integral representation of the Bose gas.Comment: 10 page

    Inhibition of lactate transport by MCT-1 blockade improves chimeric antigen receptor T-cell therapy against B-cell malignancies

    Get PDF
    BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown remarkable results against B-cell malignancies, but only a minority of patients have long-term remission. The metabolic requirements of both tumor cells and activated T cells result in production of lactate. The export of lactate is facilitated by expression of monocarboxylate transporter (MCTs). CAR T cells express high levels of MCT-1 and MCT-4 on activation, while certain tumors predominantly express MCT-1. METHODS: Here, we studied the combination of CD19-specific CAR T-cell therapy with pharmacological blockade of MCT-1 against B-cell lymphoma. RESULTS: MCT-1 inhibition with small molecules AZD3965 or AR-C155858 induced CAR T-cell metabolic rewiring but their effector function and phenotype remained unchanged, suggesting CAR T cells are insensitive to MCT-1 inhibition. Moreover, improved cytotoxicity in vitro and antitumoral control on mouse models was found with the combination of CAR T cells and MCT-1 blockade. CONCLUSION: This work highlights the potential of selective targeting of lactate metabolism via MCT-1 in combination with CAR T cells therapies against B-cell malignancies

    AKT inhibition generates potent polyfunctional clinical grade AUTO1 CAR T-cells, enhancing function and survival

    Get PDF
    BACKGROUND: AUTO1 is a fast off-rate CD19-targeting chimeric antigen receptor (CAR), which has been successfully tested in adult lymphoblastic leukemia. Tscm/Tcm-enriched CAR-T populations confer the best expansion and persistence, but Tscm/Tcm numbers are poor in heavily pretreated adult patients. To improve this, we evaluate the use of AKT inhibitor (VIII) with the aim of uncoupling T-cell expansion from differentiation, to enrich Tscm/Tcm subsets. METHODS: VIII was incorporated into the AUTO1 manufacturing process based on the semiautomated the CliniMACS Prodigy platform at both small and cGMP scale. RESULTS: AUTO1 manufactured with VIII showed Tscm/Tcm enrichment, improved expansion and cytotoxicity in vitro and superior antitumor activity in vivo. Further, VIII induced AUTO1 Th1/Th17 skewing, increased polyfunctionality, and conferred a unique metabolic profile and a novel signature for autophagy to support enhanced expansion and cytotoxicity. We show that VIII-cultured AUTO1 products from B-ALL patients on the ALLCAR19 study possess superior phenotype, metabolism, and function than parallel control products and that VIII-based manufacture is scalable to cGMP. CONCLUSION: Ultimately, AUTO1 generated with VIII may begin to overcome the product specific factors contributing to CD19+relapse

    Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies

    Get PDF
    Mature T cell cancers are typically aggressive, treatment resistant and associated with poor prognosis. Clinical application of immunotherapeutic approaches has been limited by a lack of target antigens that discriminate malignant from healthy (normal) T cells. Unlike B cell depletion, pan–T cell aplasia is prohibitively toxic. We report a new targeting strategy based on the mutually exclusive expression of T cell receptor β-chain constant domains 1 and 2 (TRBC1 and TRBC2). We identify an antibody with unique TRBC1 specificity and use it to demonstrate that normal and virus-specific T cell populations contain both TRBC1+ and TRBC2+ compartments, whereas malignancies are restricted to only one. As proof of concept for anti-TRBC immunotherapy, we developed anti-TRBC1 chimeric antigen receptor (CAR) T cells, which recognized and killed normal and malignant TRBC1+, but not TRBC2+, T cells in vitro and in a disseminated mouse model of leukemia. Unlike nonselective approaches targeting the entire T cell population, TRBC-targeted immunotherapy could eradicate a T cell malignancy while preserving sufficient normal T cells to maintain cellular immunity

    Functional antibody and T-cell immunity following SARS-CoV-2 infection, including by variants of concern, in patients with cancer: the CAPTURE study

    Get PDF
    Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology

    Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.

    Get PDF
    With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8+ to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism. Such activity only appeared relevant in the context of inflamed tumors, explaining the modest response rates observed in the clinical setting. Our data suggest that the activity of anti-CTLA-4 in inflamed tumors may be improved through enhancement of FcγR binding, whereas poorly infiltrated tumors will likely require combination approaches
    corecore