2,634 research outputs found
A domain of spacetime intervals in general relativity
Beginning from only a countable dense set of events and the causality
relation, it is possible to reconstruct a globally hyperbolic spacetime in a
purely order theoretic manner. The ultimate reason for this is that globally
hyperbolic spacetimes belong to a category that is equivalent to a special
category of domains called interval domains.Comment: 25 page
Minke whales change their swimming behavior with respect to their calling behavior, nearby conspecifics, and the environment in the central North Pacific
This research was supported by the Office of Naval Research (Code 322, Award Number N0001422WX01263), Commander, U.S. Pacific Fleet (Code N465JR, Award Number N0007023WR0EP8F), and tool development necessary for this analysis was supported by the U.S. Navy’s Living Marine Resources Program (Award Number N0002520WR0141R). AcknowledgmentsBehavioral responses to sonar have been observed in a number of baleen whales, including minke whales (Balaenoptera acutorostrata). Previous studies used acoustic minke whale boing detections to localize and track individual whales on the U.S. Pacific Missile Range Facility (PMRF) in Kaua ‘i, Hawai‘i before, during, and after Navy training activities. These analyses showed significant changes in central North Pacific minke whale distribution and swimming behavior during Navy sonar events. For the purposes of contextualizing changes in animal movement relative to Navy sonar, we expanded on this research to examine the natural variation in minke whale movement when Navy sonar was not present. This study included 2,245 acoustically derived minke whale tracks spanning the years 2012–2017 over all months that minke whales were detected (October–May). Minke whale movement was examined relative to calling season, day of the year, hour of day, wind speed, calling state (nominal or rapid), and distance to the nearest calling conspecific. Hidden Markov models were used to identify two kinematic states (slower, less directional movement and faster, more directional movement). The findings indicate that minke whales were more likely to travel in a faster and more directional state when they were calling rapidly, when other vocalizing minke whales were nearby, during certain times of the day and calling seasons, and in windier conditions, but these changes in movement were less intense than the changes observed during exposure to Navy sonar, when swim speeds were the fastest. These results start to put behavioral responses to Navy sonar into an environmental context to understand the severity of responses relative to natural changes in behavior.Publisher PDFPeer reviewe
“Glass is frozen beauty”-a memorial issue in honor of C. Austen Angell (1933–2021)
International audienc
Investigating hookworm genomes by comparative analysis of two Ancylostoma species
Background
Hookworms, infecting over one billion people, are the mostly closely related major human parasites to the model nematode Caenorhabditis elegans. Applying genomics techniques to these species, we analyzed 3,840 and 3,149 genes from Ancylostoma caninum and A. ceylanicum.
Results
Transcripts originated from libraries representing infective L3 larva, stimulated L3, arrested L3, and adults. Most genes are represented in single stages including abundant transcripts like hsp-20 in infective L3 and vit-3 in adults. Over 80% of the genes have homologs in C. elegans, and nearly 30% of these were with observable RNA interference phenotypes. Homologies were identified to nematode-specific and clade V specific gene families. To study the evolution of hookworm genes, 574 A. caninum / A. ceylanicum orthologs were identified, all of which were found to be under purifying selection with distribution ratios of nonsynonymous to synonymous amino acid substitutions similar to that reported for C. elegans / C. briggsae orthologs. The phylogenetic distance between A. caninum and A. ceylanicum is almost identical to that for C. elegans / C. briggsae.
Conclusion
The genes discovered should substantially accelerate research toward better understanding of the parasites' basic biology as well as new therapies including vaccines and novel anthelmintics
Linking the trans-Planckian and the information loss problems in black hole physics
The trans-Planckian and information loss problems are usually discussed in
the literature as separate issues concerning the nature of Hawking radiation.
Here we instead argue that they are intimately linked, and can be understood as
"two sides of the same coin" once it is accepted that general relativity is an
effective field theory.Comment: 10 pages, 2 figures. Replaced with the version to be published in
General Relativity and Gravitatio
Type 0A 2D Black Hole Thermodynamics and the Deformed Matrix Model
Recently, it has been proposed that the deformed matrix model describes a
two-dimensional type 0A extremal black hole. In this paper, the thermodynamics
of 0A charged non-extremal black holes is investigated. We observe that the
free energy of the deformed matrix model to leading order in 1/q can be seen to
agree to that of the extremal black hole. We also speculate on how the deformed
matrix model is able to describe the thermodynamics of non-extremal black
holes.Comment: 12 page
Flux noise in high-temperature superconductors
Spontaneously created vortex-antivortex pairs are the predominant source of
flux noise in high-temperature superconductors. In principle, flux noise
measurements allow to check theoretical predictions for both the distribution
of vortex-pair sizes and for the vortex diffusivity. In this paper the
flux-noise power spectrum is calculated for the highly anisotropic
high-temperature superconductor Bi-2212, both for bulk crystals and for
ultra-thin films. The spectrum is basically given by the Fourier transform of
the temporal magnetic-field correlation function. We start from a
Berezinskii-Kosterlitz-Thouless type theory and incorporate vortex diffusion,
intra-pair vortex interaction, and annihilation of pairs by means of a
Fokker-Planck equation to determine the noise spectrum below and above the
superconducting transition temperature. We find white noise at low frequencies
omega and a spectrum proportional to 1/omega^(3/2) at high frequencies. The
cross-over frequency between these regimes strongly depends on temperature. The
results are compared with earlier results of computer simulations.Comment: 9 pages, 4 PostScript figures, to be published in Phys. Rev.
On the Particle Definition in the presence of Black Holes
A canonical particle definition via the diagonalisation of the Hamiltonian
for a quantum field theory in specific curved space-times is presented. Within
the provided approach radial ingoing or outgoing Minkowski particles do not
exist. An application of this formalism to the Rindler metric recovers the
well-known Unruh effect. For the situation of a black hole the Hamiltonian
splits up into two independent parts accounting for the interior and the
exterior domain, respectively. It turns out that a reasonable particle
definition may be accomplished for the outside region only. The Hamiltonian of
the field inside the black hole is unbounded from above and below and hence
possesses no ground state. The corresponding equation of motion displays a
linear global instability. Possible consequences of this instability are
discussed and its relations to the sonic analogues of black holes are
addressed. PACS-numbers: 04.70.Dy, 04.62.+v, 10.10.Ef, 03.65.Db.Comment: 44 pages, LaTeX, no figures, accepted for publication in Phys. Rev.
- …