Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces.

Results: Falciparum malaria was endemic in two provinces of China during 2004-05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0-15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces.

Conclusion: The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance of adult men cases. Imported falciparum malaria in the non-endemic area of China, affected mainly by the malaria transmission in Yunnan, has increased both spatially and temporally. Specific intervention measures targeted at the mobile population groups are warranted.

Acknowledgements: This work was generously funded by a grant from the Life Science Institute, National University of Singapore.

CS6-04 Identification of a 16 kDa Specific Protein from Cyst Fluid of Cysticercus and its N-Terminal Amino Acid Sequencing

Cheng-xu Ma1, Yan-ping Xue2, Si-qi Lu*1, Ya-ping Yang1, Feng-yun Wang1, Department of Parasitology, Capital Medical University; 2Beijing Tropical Medicine Research Institute, Capital Medical University Beijing Friendship Hospital

In order to search a molecular biomarker with low molecular weight for the diagnosis of cysticercosis, cysticercuses from the muscle of a naturally infected pig were isolated and collected. Rough antigen was prepared from the cyst fluid of the cysticercus and used to immunize rabbits. General protein of the cyst fluid was analyzed by SDS-PAGE. Specific protein was identified with Western blot method by antiserum obtained from the immunized rabbits. N-terminal amino acids of the identified protein were detected and sequenced with Edman degradation. The results demonstrated that a 16kDa protein with high specificity was identified from the cyst fluid of cysticercus and 10 amino acids were detected in its N-terminal and sequenced as DLSKGEWQLV. It is shown that the 16kDa protein has 80% identity to myoglobin. It will be useful in the further study on the immunodiagnosis of cysticercosis.