5 research outputs found

    Decreased Expression of A-Kinase Anchoring Protein 150 in GT1 Neurons Decreases Neuron Excitability and Frequency of Intrinsic Gonadotropin-Releasing Hormone Pulses

    No full text
    The frequency of intrinsic pulsatile GnRH secretion from endogenous GnRH neurons and GT1 GnRH cell lines is stimulated by increased intracellular cAMP levels. The downstream molecules comprising the cAMP signaling pathway are organized in microdomains by a family of scaffolding proteins, A-kinase anchoring proteins (AKAPs). These molecules tether protein kinase A, cAMP-specific phosphodiesterases, phosphatases to known substrates. In neurons AKAP150 organizes many of the signaling molecules known to regulate the excitability and intrinsic pulsatile activity of GnRH neurons. AKAP150 was expressed in both the GT1-1 and GT1-7 cells. We determined the role of AKAP150 in coordinating GT1-1 cell excitability and intrinsic GnRH pulsatile secretion by lowering AKAP150 levels with a small interfering RNA (siRNA) adenovirus construct to AKAP150 (Ad-AKAP150-siRNA). Infection with Ad-AKAP150-siRNA specifically decreased AKAP150 mRNA levels by 74% and protein levels by 53% relative to uninfected cells or cells infected with a luciferase control adenovirus siRNA vector. In GT1 cells, spontaneous Ca2+ oscillations, an index of neuron excitability, are stimulated by increased levels of intracellular cAMP and lowered by decreased levels. The frequency of spontaneous Ca2+ oscillations in Ad-AKAP150-siRNA-treated GT1-1 cells decreased by 47.2% relative to controls. A dramatic decrease in the number of spontaneous GnRH pulses was also observed after infection with Ad-AKAP150-siRNA. The interpulse interval increased to 143 ± 20.25 min in Ad-AKAP150-siRNA infected cells from 32.2 ± 7.3 min in luciferase control adenovirus siRNA vector-infected cells. These data demonstrate an important role of AKAP150 in coordinating signaling events regulating the frequency of intrinsic pulsatile GnRH secretion

    Development of Gonadotropin-Releasing Hormone-1 Secretion in Mouse Nasal Explants

    No full text
    Pulsatile release of GnRH-1 is critical to stimulate gonadotropes of the anterior pituitary. This secretory pattern seems to be inherent to GnRH-1 neurons, however, the mechanisms underlying such episodical release remain unknown. In monkey nasal explants, the GnRH-1 population exhibits synchronized calcium events with the same periodicity as GnRH-1 release, suggesting a link, though the sequence of events was unclear. GnRH-1 neurons in mouse nasal explants also exhibit synchronized calcium events. In the present work, GnRH-1 release was assayed in mouse nasal explants using radioimmunology and its relationship with calcium signaling analyzed. GnRH-1 neurons generated episodical release as early as 3 d in vitro (div) and maintained such release throughout the period studied (3–21 div). The pulse frequency remained constant, suggesting that the pulse generator is operative at an early developmental stage. In contrast, pulse amplitude increased 2-fold between 3 and 7 div, and again between 7 and 14 div, suggesting maturation in synthesizing and/or secretory mechanisms. To evaluate these possibilities, total GnRH-1 content was measured. Only a small increase in GnRH-1 content was detected between 7 and 14 div, whereas a large increase occurred between 14 and 21 div. These data indicate that GnRH-1 content was not a limiting factor for the amplitude of the pulses at 7 div but that the secretory mechanisms mature between 3 and 14 div. The application of kisspeptin-10 revealed the ability of GnRH-1 neurons to integrate signals from natural ligands into a secretory response. Finally, simultaneous sampling of medium and calcium imaging recordings indicated that the synchronized calcium events and secretory events are congruent

    Epigenetic Changes Coincide with in Vitro Primate GnRH Neuronal Maturation

    No full text
    Cellular and molecular mechanisms underlying pulsatile GnRH release are not well understood. In the present study, we examined the developmental changes in intracellular calcium dynamics, peptide release, gene expression, and DNA methylation in cultured GnRH neurons derived from the nasal placode of rhesus monkeys. We found that GnRH neurons were functionally immature, exhibiting little fluctuation in intracellular calcium ([Ca2+]i) and sparse pulses of GnRH peptide release in the first 12 d in vitro (div). By 14–18 div, GnRH neurons exhibited periodic [Ca2+]i oscillations, synchronizing at approximately 60-min intervals and GnRH pulses occurred at approximately 60-min intervals. Interestingly, the total GnRH peptide release further increased after 18 div. Measurement of GnRH mRNA and gene CpG methylation status at 0, 14, and 20 div indicated that mRNA levels significantly (P < 0.05) increased between 14 and 20 div, just as maximal decapeptide release was observed. By bisulfite sequencing across a 5′ CpG island of the GnRH gene, we further found that methylation at eight of 14 CpG sites significantly (P < 0.05) decreased between 0 and 20 div. These data indicate that epigenetic differentiation occurs during GnRH neuronal development and suggest that increased GnRH gene expression and decreased CpG methylation status are molecular phenotypes of mature GnRH neurons. To our knowledge, this is the first report that developmental DNA demethylation occurs in postmitotic neurons toward a stable neuronal phenotype
    corecore