4,994 research outputs found

    Parameter estimation of S-distributions with alternating regression

    Get PDF
    We propose a novel 3-way alternating regression (3-AR) method as an effective strategy for the estimation of parameter values in S-distributions from frequency data. The 3-AR algorithm is very fast and performs well for error-free distributions and artificial noisy data obtained as random samples generated from S-distributions, as well as for traditional statistical distributions and for actual observation data. In rare cases where the algorithm does not immediately converge, its enormous speed renders it feasible to select several initial guesses and search settings as an effective countermeasure.Peer Reviewe

    Parameter estimation in biochemical systems models with alternating regression

    Get PDF
    BACKGROUND: The estimation of parameter values continues to be the bottleneck of the computational analysis of biological systems. It is therefore necessary to develop improved methods that are effective, fast, and scalable. RESULTS: We show here that alternating regression (AR), applied to S-system models and combined with methods for decoupling systems of differential equations, provides a fast new tool for identifying parameter values from time series data. The key feature of AR is that it dissects the nonlinear inverse problem of estimating parameter values into iterative steps of linear regression. We show with several artificial examples that the method works well in many cases. In cases of no convergence, it is feasible to dedicate some computational effort to identifying suitable start values and search settings, because the method is fast in comparison to conventional methods that the search for suitable initial values is easily recouped. Because parameter estimation and the identification of system structure are closely related in S-system modeling, the AR method is beneficial for the latter as well. Specifically, we show with an example from the literature that AR is three to five orders of magnitudes faster than direct structure identifications in systems of nonlinear differential equations. CONCLUSION: Alternating regression provides a strategy for the estimation of parameter values and the identification of structure and regulation in S-systems that is genuinely different from all existing methods. Alternating regression is usually very fast, but its convergence patterns are complex and will require further investigation. In cases where convergence is an issue, the enormous speed of the method renders it feasible to select several initial guesses and search settings as an effective countermeasure

    Statistical properties of energy levels of chaotic systems: Wigner or non-Wigner

    Full text link
    For systems whose classical dynamics is chaotic, it is generally believed that the local statistical properties of the quantum energy levels are well described by Random Matrix Theory. We present here two counterexamples - the hydrogen atom in a magnetic field and the quartic oscillator - which display nearest neighbor statistics strongly different from the usual Wigner distribution. We interpret the results with a simple model using a set of regular states coupled to a set of chaotic states modeled by a random matrix.Comment: 10 pages, Revtex 3.0 + 4 .ps figures tar-compressed using uufiles package, use csh to unpack (on Unix machine), to be published in Phys. Rev. Let

    Scars of Invariant Manifolds in Interacting Chaotic Few-Body Systems

    Full text link
    We present a novel extension of the concept of scars for the wave functions of classically chaotic few-body systems of identical particles with rotation and permutation symmetry. Generically there exist manifolds in classical phase space which are invariant under the action of a common subgroup of these two symmetries. Such manifolds are associated with highly symmetric configurations. If sufficiently stable, the quantum motion on such manifolds displays a notable enhancement of the revival in the autocorrelation function which is not directly associated with individual periodic orbits. Rather, it indicates some degree of localization around an invariant manifold which has collective characteristics that should be experimentally observable.Comment: 4 pages, RevTeX, 4 PS/EPS-figures, uses psfig.sty, quantum computation changed, to be published in Physical Review Letter

    The metallic state in disordered quasi-one-dimensional conductors

    Get PDF
    The unusual metallic state in conjugated polymers and single-walled carbon nanotubes is studied by dielectric spectroscopy (8--600 GHz). We have found an intriguing correlation between scattering time and plasma frequency. This relation excludes percolation models of the metallic state. Instead, the carrier dynamics can be understood in terms of the low density of delocalized states around the Fermi level, which arises from the competion between disorder-induced localization and interchain-interactions-induced delocalization.Comment: 4 pages including 4 figure

    On the origin of chirality in plasmonic meta-molecules

    Full text link
    Chirality is a fundamental feature in all domains of nature, ranging from particle physics over electromagnetism to chemistry and biology. Chiral objects lack a mirror plane and inversion symmetry and therefore cannot be spatially aligned with their mirrored counterpart, their enantiomer. Both natural molecules and artificial chiral nanostructures can be characterized by their light-matter interaction, which is reflected in circular dichroism (CD). Using DNA origami, we assemble model meta-molecules from multiple plasmonic nanoparticles, representing meta-atoms accurately positioned in space. This allows us to reconstruct piece by piece the impact of varying macromolecular geometries on their surrounding optical near fields. Next to the emergence of CD signatures in the instance that we architect a third dimension, we design and implement sign flipping signals through addition or removal of single particles in the artificial molecules. Our data and theoretical modelling reveal the hitherto unrecognized phenomenon of chiral plasmonic-dielectric coupling, explaining the intricate electromagnetic interactions within hybrid DNA-based plasmonic nanostructures.Comment: Article and Supporting Informatio

    Quick Minds Slowed Down: Effects of Rotation and Stimulus Category on the Attentional Blink

    Get PDF
    BACKGROUND: Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional restriction known as the 'attentional blink' (AB). However, there are large individual differences in the magnitude of the effect, with some people showing no such attentional restrictions. METHODOLOGY/PRINCIPAL FINDINGS: Here we present behavioral and electrophysiological evidence suggesting that these 'non-blinkers' can use alphanumeric category information to select targets at an early processing stage. When such information was unavailable and target selection could only be based on information that is processed relatively late (rotation), even non-blinkers show a substantial AB. Electrophysiologically, in non-blinkers this resulted in enhanced distractor-related prefrontal brain activity, as well as delayed target-related occipito-parietal activity (P3). CONCLUSION/SIGNIFICANCE: These findings shed new light on possible strategic mechanisms that may underlie individual differences in AB magnitude and provide intriguing clues as to how temporal restrictions as reflected in the AB can be overcome
    corecore