6 research outputs found

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    The Role of Yersinia enterocolitica O : 3 Lipopolysaccharide in Collagen-Induced Arthritis

    Get PDF
    Yersinia enterocolitica O:3 is mentioned among the most common arthritogenic pathogens. Bacterial components (including lipopolysaccharide (LPS)) may persist in the joint after eradication of infection. Having an adjuvant activity, LPS may enhance production of anticollagen antibodies, involved in the pathogenesis of rheumatoid arthritis. Furthermore, its ability to activate complement contributes to the inflammation. The aim of this work was to investigate whether Yersinia LPS (coinjected with collagen) is associated with arthritis progression or other pathological effects and to elucidate the mechanism of this association. It was demonstrated that murine mannose-binding lectin C (MBL-C) recognizes the inner core heptoses of the Rd1 chemotype LPS of Yersinia. In addition, the Rd1 LPS activates the MBL-associated serine protease 1 (MASP-1) stronger than the S and Ra chemotype LPS and comparable to Klebsiella pneumoniae O:3 LPS. However, in contrast to the latter, Yersinia Rd1 LPS was associated neither with the adjuvancity nor with the enhancement of pathological changes in animal paws/impairment of motility. On the other hand, it seemed to be more hepatotoxic when compared with the other tested endotoxins, while the enlargement of inguinal lymph nodes and drop in hepatic MBL-C expression (at the mRNA level) were independent of LPS chemotype. Our data did not suggest no greater impact Y. enterocolitica O:3 on the development or severity of arthropathy related to anticollagen antibody-induced arthritis in mice, although its interaction with MBL-C and subsequent complement activation may contribute to some adverse effects.Peer reviewe

    Conserved functions of Arabidopsis mitochondrial late-acting maturation factors in the trafficking of iron‑sulfur clusters

    No full text
    Numerous proteins require iron-sulfur (Fe-S) clusters as cofactors for their function.Their biogenesis is a multi-step process occurring in the cytosol and mitochondria of all eukaryotes and additionally in plastids of photosynthetic eukaryotes. A basic model of Fe-S protein maturation in mitochondria has been obtained based on studies achieved in mammals and yeast, yet some molecular details, especially of the late steps, still require investigation. In particular, the late-acting biogenesis factors in plant mitochondria are poorly understood. In this study, we expressed the factors belonging to NFU, BOLA, SUFA/ISCA and IBA57 families in the respective yeast mutant strains. Expression of the Arabidopsis mitochondrial orthologs was usually sufficient to rescue the growth defects observed on specific media and/or to restore the abundance or activity of the defective Fe-S or lipoic acid-dependent enzymes.These data demonstrate that the plant mitochondrial counterparts, including duplicated isoforms, likely retained their ancestral functions. In contrast, the SUFA1 and IBA57.2 plastidial isoforms cannot rescue the lysine and glutamate auxotrophies of the respective isal-isa24 and iba574 strains or of the isal-isa2-iba57A triple mutant when expressed in combination.This suggests a specialization of the yeast mitochondrial and plant plastidial factors in these late steps of Fe-S protein biogenesis, possibly reflecting substrate-specific interactions in these different compartments

    Patrilocality and hunter-gatherer-related ancestry of populations in East-Central Europe during the Middle Bronze Age

    No full text
    The demographic history of East-Central Europe after the Neolithic period remains poorly explored, despite this region being on the confluence of various ecological zones and cultural entities. Here, the descendants of societies associated with steppe pastoralists form Early Bronze Age were followed by Middle Bronze Age populations displaying unique characteristics. Particularly, the predominance of collective burials, the scale of which, was previously seen only in the Neolithic. The extent to which this re-emergence of older traditions is a result of genetic shift or social changes in the MBA is a subject of debate. Here by analysing 91 newly generated genomes from Bronze Age individuals from present Poland and Ukraine, we discovered that Middle Bronze Age populations were formed by an additional admixture event involving a population with relatively high proportions of genetic component associated with European hunter-gatherers and that their social structure was based on, primarily patrilocal, multigenerational kin-groups. By analysing 91 Bronze Age genomes from East-Central Europe, the authors discovered that Middle Bronze Age populations were formed by an admixture event involving hunter-gatherers and that the social structure of resulting population was primarily patrilocal
    corecore