21 research outputs found

    Co-occurrence of cohesin complex and Ras signaling mutations during progression from myelodysplastic syndromes to secondary acute myeloid leukemia

    Get PDF
    Myelodysplastic syndromes (MDS) are hematological disorders at high risk of progression to secondary acute myeloid leukemia (sAML). However, the mutational dynamics and clonal evolution underlying disease progression are poorly understood at present. To elucidate the mutational dynamics of pathways and genes occurring during the evolution to sAML, next generation sequencing was performed on 84 serially paired samples of MDS patients who developed sAML (discovery cohort) and 14 paired samples from MDS patients who did not progress to sAML during follow-up (control cohort). Results were validated in an independent series of 388 MDS patients (validation cohort). We used an integrative analysis to identify how mutations, alone or in combination, contribute to leukemic transformation. The study showed that MDS progression to sAML is characterized by greater genomic instability and the presence of several types of mutational dynamics, highlighting increasing (STAG2) and newly-acquired (NRAS and FLT3) mutations. Moreover, we observed cooperation between genes involved in the cohesin and Ras pathways in 15-20% of MDS patients who evolved to sAML, as well as a high proportion of newly acquired or increasing mutations in the chromatin-modifier genes in MDS patients receiving a disease-modifying therapy before their progression to sAML.This work was supported by grants from the Spanish Fondo de Investigaciones Sanitarias FIS PI18/01500, PI17/01741, Instituto de Salud Carlos III (ISCIII), Fondo de Investigación Sanitaria (Instituto de Salud Carlos III – Contratos Río Hortega (CM17/0017), European Regional Development Fund (ERDF), Una manera de hacer Europa, European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement nº306242-NGS-PTL, SYNtherapy: Synthetic Lethality for Personalized Therapy-based Stratification in Acute Leukemia (ERAPERMED2018-275); ISCIII (AC18/00093), Proyectos de Investigación del SACYL, Gerencia Regional de Salud de Castilla y León: GRS1850/A18, GRS1653/A17, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC CB16/12/00233). MMI is supported by a predoctoral grant from the Junta de Castilla y León, and by the Fondo Social Europeo (JCYL-EDU/556/2019 PhD scholarship) and JMHS is supported by a research grant from Fundación Española de Hematología y Hemoterapia

    Genome-wide DNA copy number analysis of acute lymphoblastic leukemia identifies new genetic markers associated with clinical outcome

    Get PDF
    Altres ajuts: FUCALHH 2013; HUS272U13; GRS 994/A/14, BIO/SA10/14, BIO/SA31/13; Fundación Española de Hematología y Hemoterapia (FEHH), Universidad Pedagógica y Tecnológica de Colombia 223-2011Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL) is still a challenge. Aims: To characterize the presence of additional DNA copy number alterations (CNAs) in children and adults with ALL by whole-genome oligonucleotide array (aCGH) analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults). The NimbleGen CGH 12x135K array (Roche) was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q). CNAs were associated with age, phenotype, genetic subtype and overall survival (OS). In the whole cohort of children, the losses on 14q32.33 (p = 0.019) and 15q13.2 (p = 0.04) were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001) and Xp21.1 (p = 0.029), and the loss of 17p (p = 0.014) were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL

    Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes

    Get PDF
    [EN] To explore novel genetic abnormalities occurring in myelodysplastic syndromes (MDS) through an integrative study combining array-based comparative genomic hybridization (aCGH) and next-generation sequencing (NGS) in a series of MDS and MDS/ myeloproliferative neoplasms (MPN) patients. 301 patients diagnosed with MDS (n = 240) or MDS/ MPN (n = 61) were studied at the time of diagnosis. A genome-wide analysis of DNA copy number abnormalities was performed. In addition, a mutational analysis of DNMT3A, TET2, RUNX1, TP53 and BCOR genes was performed by NGS in selected cases. 285 abnormalities were identified in 71 patients (23.6%). Three high-risk MDS cases (1.2%) displayed chromothripsis involving exclusively chromosome 13 and affecting some cancer genes: FLT3, BRCA2 and RB1. All three cases carried TP53 mutations as revealed by NGS. Moreover, in the whole series, the integrative analysis of aCGH and NGS enabled the identification of cryptic recurrent deletions in 2p23.3 (DNMT3A; n = 2.8%), 4q24 (TET2; n = 10%) 17p13 (TP53; n = 8.5%), 21q22 (RUNX1; n = 7%), and Xp11.4 (BCOR; n = 2.8%), while mutations in the non-deleted allele where found only in DNMT3A (n = 1), TET2 (n = 3), and TP53 (n = 4). These cryptic abnormalities were detected mainly in patients with normal (45%) or non-informative (15%) karyotype by conventional cytogenetics, except for those with TP53 deletion and mutation (15%), which had a complex karyotype. In addition to well-known copy number defects, the presence of chromothripsis involving chromosome 13 was a novel recurrent change in high-risk MDS patients. Array CGH analysis revealed the presence of cryptic abnormalities in genomic regions where MDS-related genes, such as TET2, DNMT3A, RUNX1 and BCOR, are located.European Commision (EC). Funding FP7/SP1/HEALTH. Project Code: 30624

    Chromothripsis is a recurrent genomic abnormality in high-risk myelodysplastic syndromes

    No full text
    To explore novel genetic abnormalities occurring in myelodysplastic syndromes (MDS) through an integrative study combining array-based comparative genomic hybridization (aCGH) and next-generation sequencing (NGS) in a series of MDS and MDS/myeloproliferative neoplasms (MPN) patients. 301 patients diagnosed with MDS (n = 240) or MDS/MPN (n = 61) were studied at the time of diagnosis. A genome-wide analysis of DNA copy number abnormalities was performed. In addition, a mutational analysis of DNMT3A, TET2, RUNX1, TP53 and BCOR genes was performed by NGS in selected cases. 285 abnormalities were identified in 71 patients (23.6%). Three high-risk MDS cases (1.2%) displayed chromothripsis involving exclusively chromosome 13 and affecting some cancer genes: FLT3, BRCA2 and RB1. All three cases carried TP53 mutations as revealed by NGS. Moreover, in the whole series, the integrative analysis of aCGH and NGS enabled the identification of cryptic recurrent deletions in 2p23.3 (DNMT3A; n = 2.8%), 4q24 (TET2; n = 10%) 17p13 (TP53; n = 8.5%), 21q22 (RUNX1; n = 7%), and Xp11.4 (BCOR; n = 2.8%), while mutations in the non-deleted allele where found only in DNMT3A (n = 1), TET2 (n = 3), and TP53 (n = 4). These cryptic abnormalities were detected mainly in patients with normal (45%) or non-informative (15%) karyotype by conventional cytogenetics, except for those with TP53 deletion and mutation (15%), which had a complex karyotype. In addition to wellknown copy number defects, the presence of chromothripsis involving chromosome 13 was a novel recurrent change in high-risk MDS patients. Array CGH analysis revealed thepresence of cryptic abnormalities in genomic regions where MDS-related genes, such as TET2, DNMT3A, RUNX1 and BCOR, are located.This work was partially supported by Grants from the Spanish Fondo de Investigaciones Sanitarias FIS (PI12/00281); Proyectos de Investigación del SACYL (BIO/SA47/13; BIO/SA52/14; GRS/874/A13; GRS 994/A/14); COST Action “EuGESMA”(BM0801); Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos III (ISCIII), Spanis Ministry of Economy and Competitiveness & European Regional Development Fund (ERDF) “Una manera de hacer Europa”(Innocampus, CEI2010-1-0010) (RD12/0036/0069; RD12/0036/0029; RD12/0036/0044); and the European Union Seventh Framework Programme [FP7/2007-2013] under Grant Agreement n˚306242-NGS-PTL. MA was supported by a “Junta para Ampliación de Estudios”fellowship [09-02402] of the Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), cofunded by the European Social Fund, and by a “Grant from Fundación Española de Hematología y Hemoterapia”. AK is employed by AstraZenecaPeer Reviewe

    Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival

    No full text
    [EN]In order to gain further insights into the role of the p16 gene in cell cycle regulation and the prognostic implications of its inactivation, we investigated the methylation status of the p16 gene in 98 untreated patients using a polymerase chain reaction assay based on the inability of some restriction enzymes to digest methylated sequences. Forty-one patients showed a p16 methylated gene (42%). The percentage of S-phase plasma cells (PC) in these patients was almost three times higher than in those with an unmethylated p16 gene (4Æ16% ± 3Æ37% vs 1Æ5% ± 1Æ41%, P < 0Æ001). The presence of p16 methylation also correlated with both elevated b2-microglobulin serum levels and high C-reactive protein values. Patients with a p16 methylated gene had shorter overall and progression-free survival than those patients without p16 methylation. However, this feature did not retain independent prognostic influence on multivariate analysis, probably due to its association with the S-phase PC, which had more potent statistical significance in the Cox model. These findings showed methylation of the p16 gene was a frequent event in MM patients at diagnosis, and was associated with an increased proliferative rate of plasma cells and a poor prognosis, indicating an important role for p16 gene in the cell cycle regulation of multiple myeloma tumour cells, and thus in the clinical outcome of the disease

    Chromothripsis Is a Recurrent Genomic Abnormality in High-Risk Myelodysplastic Syndromes.

    No full text
    To explore novel genetic abnormalities occurring in myelodysplastic syndromes (MDS) through an integrative study combining array-based comparative genomic hybridization (aCGH) and next-generation sequencing (NGS) in a series of MDS and MDS/myeloproliferative neoplasms (MPN) patients. 301 patients diagnosed with MDS (n = 240) or MDS/MPN (n = 61) were studied at the time of diagnosis. A genome-wide analysis of DNA copy number abnormalities was performed. In addition, a mutational analysis of DNMT3A, TET2, RUNX1, TP53 and BCOR genes was performed by NGS in selected cases. 285 abnormalities were identified in 71 patients (23.6%). Three high-risk MDS cases (1.2%) displayed chromothripsis involving exclusively chromosome 13 and affecting some cancer genes: FLT3, BRCA2 and RB1. All three cases carried TP53 mutations as revealed by NGS. Moreover, in the whole series, the integrative analysis of aCGH and NGS enabled the identification of cryptic recurrent deletions in 2p23.3 (DNMT3A; n = 2.8%), 4q24 (TET2; n = 10%) 17p13 (TP53; n = 8.5%), 21q22 (RUNX1; n = 7%), and Xp11.4 (BCOR; n = 2.8%), while mutations in the non-deleted allele where found only in DNMT3A (n = 1), TET2 (n = 3), and TP53 (n = 4). These cryptic abnormalities were detected mainly in patients with normal (45%) or non-informative (15%) karyotype by conventional cytogenetics, except for those with TP53 deletion and mutation (15%), which had a complex karyotype. In addition to well-known copy number defects, the presence of chromothripsis involving chromosome 13 was a novel recurrent change in high-risk MDS patients. Array CGH analysis revealed the presence of cryptic abnormalities in genomic regions where MDS-related genes, such as TET2, DNMT3A, RUNX1 and BCOR, are located

    Genome-wide DNA copy number analysis of acute lymphoblastic leukemia identifies new genetic markers associated with clinical outcome

    No full text
    Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL) is still a challenge. Aims: To characterize the presence of additional DNA copy number alterations (CNAs) in children and adults with ALL by whole-genome oligonucleotide array (aCGH) analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults). The NimbleGen CGH 12x135K array (Roche) was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q). CNAs were associated with age, phenotype, genetic subtype and overall survival (OS). In the whole cohort of children, the losses on 14q32.33 (p = 0.019) and 15q13.2 (p = 0.04) were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001) and Xp21.1 (p = 0.029), and the loss of 17p (p = 0.014) were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n°306242-NGS-PTL, the Fundación Castellano Leonesa de Hematología y Hemoterapia (FUCALHH 2013), the Consejería de Educación, Junta de Castilla y León (HUS272U13), Proyectos de Investigación del SACYL, Spain: GRS 994/A/14, BIO/SA10/14, BIO/SA31/13. The work was partially supported by grants from the Spanish Fondo de Investigaciones Sanitarias FIS 09/01543, PI12/00281, COST Action EuGESMA (BM0801), Fundación Española de Hematología y Hemoterapia (FEHH), and by grants (RD12/0036/0069) from the Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos III (ISCIII), the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (ERDF) “Una manera de hacer Europa” (Innocampus; CEI-2010-1-0010). MFC was supported by study commission (no. 223-2011) granted by the Universidad Pedagógica y Tecnológica de Colombia, Colombia.Peer Reviewe

    Genome-wide DNA copy number analysis of acute lymphoblastic leukemia identifies new genetic markers associated with clinical outcome

    No full text
    Altres ajuts: FUCALHH 2013; HUS272U13; GRS 994/A/14, BIO/SA10/14, BIO/SA31/13; Fundación Española de Hematología y Hemoterapia (FEHH), Universidad Pedagógica y Tecnológica de Colombia 223-2011Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL) is still a challenge. Aims: To characterize the presence of additional DNA copy number alterations (CNAs) in children and adults with ALL by whole-genome oligonucleotide array (aCGH) analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults). The NimbleGen CGH 12x135K array (Roche) was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q). CNAs were associated with age, phenotype, genetic subtype and overall survival (OS). In the whole cohort of children, the losses on 14q32.33 (p = 0.019) and 15q13.2 (p = 0.04) were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001) and Xp21.1 (p = 0.029), and the loss of 17p (p = 0.014) were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL

    Summary of recurrent CNAs found in the global series.

    No full text
    <p>(<b>A</b>) Proportion of the whole series of patients with normal and abnormal aCGH profiles. Each aCGH category is then divided by the cytogenetic subgroups detected by CC studies: normal, abnormal and non-informative karyotype. Percentages represent the proportion of patients from the total number of patients within each cytogenetic subgroup. (<b>B</b>) Frequency of large recurrent genomic abnormalities and frequency of cryptic recurrent CNAs involving genes of known significance in MDS and MDS/MPN patients only seen by aCGH. All abnormalities are classified by MDS and MDS/MPN subtypes and color-coded as indicated on the right panel of the figure.</p
    corecore