334 research outputs found

    A conjectured scenario for order-parameter fluctuations in spin glasses

    Get PDF
    We study order-parameter fluctuations (OPF) in disordered systems by considering the behavior of some recently introduced paramaters G,GcG,G_c which have proven very useful to locate phase transitions. We prove that both parameters G (for disconnected overlap disorder averages) and GcG_c (for connected disorder averages) take the respective universal values 1/3 and 13/31 in the T0T\to 0 limit for any {\em finite} volume provided the ground state is {\em unique} and there is no gap in the ground state local-field distributions, conditions which are met in generic spin-glass models with continuous couplings and no gap at zero coupling. This makes G,GcG,G_c ideal parameters to locate phase transitions in disordered systems much alike the Binder cumulant is for ordered systems. We check our results by exactly computing OPF in a simple example of uncoupled spins in the presence of random fields and the one-dimensional Ising spin glass. At finite temperatures, we discuss in which conditions the value 1/3 for G may be recovered by conjecturing different scenarios depending on whether OPF are finite or vanish in the infinite-volume limit. In particular, we discuss replica equivalence and its natural consequence limVG(V,T)=1/3\lim_{V\to\infty}G(V,T)=1/3 when OPF are finite. As an example of a model where OPF vanish and replica equivalence does not give information about G we study the Sherrington-Kirkpatrick spherical spin-glass model by doing numerical simulations for small sizes. Again we find results compatible with G=1/3 in the spin-glass phase.Comment: 18 pages, 9 postscript figure

    Scaling approach to order-parameter fluctuations in disordered frustrated systems

    Full text link
    We present a constructive approach to obtain information about the compactness and shape of large-scale lowest excitations in disordered systems by studying order-parameter fluctuations (OPF) at low temperatures. We show that the parameter GG which measures OPF is 1/3 at T=0 provided the ground state is unique and the probability distribution for the lowest excitations is gapless and with finite weight at zero-excitation energy. We then apply zero-temperature scaling to describe the energy and volume spectra of the lowest large-scale excitations which scale with the system size and have a weight at ze ro energy P^v(0)lθ\hat{P}_v(0)\sim l^{-\theta'} with v=ldv=l^d. A low-temperature expansion reveals that, OPF vanish like LθL^{-\theta}, if θ>0\theta> 0 and remain finite for space filling lowest excitations with θ=0\theta=0. The method can be extended to extract information about the shape and fractal surface of the large-scale lowest excitations.Comment: 4 pages, REVTeX. Some modifications; final version accepted for publication in J. Phys. A: Math. and General (Letters

    Efficiency of Rejection-Free Methods for Dynamic Monte Carlo Studies of Off-lattice Interacting Particles

    Full text link
    We calculate the efficiency of a rejection-free dynamic Monte Carlo method for dd-dimensional off-lattice homogeneous particles interacting through a repulsive power-law potential rpr^{-p}. Theoretically we find the algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to ρp+22Td2\rho^{\tfrac{p+2}{2}}T^{-\tfrac{d}{2}} with the particle density ρ\rho and the temperature TT. Dynamic Monte Carlo simulations are performed in 1-, 2- and 3-dimensional systems with different powers pp, and the results agree with the theoretical predictions.Comment: revtex4, 4 pages, 6 figure

    Ecological quality assessement of marinas: An integrative approach combining biological and environmental data

    Get PDF
    The importance of marinas as infrastructures for recreational boating is increasing substantially. However, information on their soft-bottom benthic communities, a key tool for managing programmes, is still scarce. We combined environment features with macro- and meiofaunal soft-bottom community information for assessing the ecological status of marinas with an integrative approach. To address this issue, we focused on eight marinas of the Southern Iberian Peninsula. Macro- and meiofauna data revealed high benthic heterogeneity at a spatial scale. The environmental variables which correlated best with macrofauna were mainly phosphorus, granulometry, and total organic carbon, and secondarily important variables were faecal coliforms, the biocide Irgarol, and heavy metals; total hydrocarbon concentration was also significant for meiofauna. Annelida was the dominant phylum in terms of number of species (37%) and abundance (66%) and were better descriptors of the environmental conditions than Arthropoda and Mollusca. Although identification to the species level is desirable and mandatory for assessing biological pollution, significant differences among marinas and correlations between fauna and abiotic variables were already detected at the level of family and order. This implies that biota assessment at higher levels may still be useful in monitoring programmes limited by time and budget constraints. The major novelty of this study lies in the development of an integrative assessment method based on the following selected ecological indicators: Marinas Environmental Pollution Index (MEPI), Biocontamination Index (BCI), macrofaunal biotic indices (AMBI, M-AMBI, BENTIX, MEDOCC and BENFES), macrofaunal taxa richness and Shannon-Wiener's diversity, and nematode:copepod index. This approach was able to discriminate marinas of the Southern Iberian Peninsula based on their ecological status, which ranged from poor to good. The method can be useful to design standards for assigning “sustainable quality seals” to those marinas with better values of ecological indicators.Financial support for this study was provided by the Ministerio de Ciencia, Innovación y Universidades (Project CGL 2017-82739-P co-financed by the Agencia Estatal de Investigación -AEI- and Fondo Europeo de Desarrollo Regional - FEDER-)

    EXPLORING THE IMPACT OF APOE POLYMORPHISM ON THE MOLECULAR, MORPHOLOGICAL AND FUNCTIONAL PROFILE OF iPSC-DERIVED ASTROCYTES FROM ALZHEIMER'S PATIENTS

    Get PDF
    Comunicación presentada a FENS Forum 2022Alzheimer¿s disease (AD) is pathologically characterised by the presence of amyloid-beta plaques, neurofibrillary tangles containing hyperphosphorylated Tau protein, neuroinflammation and neuronal death leading to progressive cognitive impairment. The ¿4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte differentiation, maturation and function is not yet fully understood. To go in depth on these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ¿3 and ¿4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated by establishing a differentiation protocol through the consecutive addition of small molecules and growth factors, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) and APOE was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves production. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual¿s genetic background in favouring or perhaps preventing AD pathology

    ANALYSING THE MOLECULAR, MORPHOLOGICAL AND FUNCTIONAL PROFILE OF iPSC-DERIVED ASTROCYTES FROM ALZHEIMER'S DISEASE PATIENTS

    Get PDF
    Comunicación presentada en Global Summit on Neurodegenerative Diseases NEURO 2020/22The ε4 allele of the gene encoding apolipoprotein E (APOE), which is mainly expressed in glial cells, is the strongest genetic risk factor for sporadic AD. Increasing evidence has shown that APOE4 may disrupt normal astrocyte activity, potentially contributing to AD pathology, but the impact of different APOE alleles on astrocyte maturation and function as well as their inflammatory profile is not yet fully understood. To answer these questions, we obtained induced pluripotent stem cells (iPSCs) from fibroblasts of AD patients carrying ε3 and ε4 alleles (in homozygosis) and from healthy patients. We also used gene-edited iPSC lines homozygous for the main APOE variants and an APOE knock-out line. iPSC-derived human astrocytes were generated through the consecutive addition of small molecules and growth factors to the culture medium, and the expression of typical markers (GFAP, GLT1, AQP4 and S100beta) was analysed. In addition, astrocytes exhibited functional features like glutamate uptake capacity and calcium waves. They also responded to an inflammatory stimulus (IL-1beta and TNF-alpha) or to the presence of amyloid-beta 1-42 peptide by changing their morphology and increasing the expression levels of pro-inflammatory factors and cytokines. Our results shed light on the potential dual role of APOE polymorphism and the individual's genetic background in favouring or perhaps preventing AD pathology

    Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings.

    Get PDF
    BACKGROUND: The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. METHODS: Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. RESULTS: Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. CONCLUSIONS: Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics

    Controlled UV laser cleaning of painted artworks: S systematic effect study on egg tempera paint samples

    Get PDF
    The Cooperative Research project “Advanced workstation for controlled laser cleaning of artworks” (ENV4-CT98-0787) has yielded important information on the application of UV laser cleaning to paint materials. In the project, in which conservators, researchers and engineers participated, the viability of the laser technique as an additional tool in present conservation practice was investigated. The research was pointed at the definition of the boundary conditions in which laser cleaning can be safely applied. It included a systematic effect study of tempera paint systems. Physical and chemical changes, induced by exposure to UV (248 nm) excimer laser light under various conditions, were evaluated. In parallel, an innovative laser cleaning tool was developed, allowing accurate and controlled removal of superficial layers from paint materials. Both aspects of the project are presented. The presentation of the research focuses on the integration of the results from various analytical techniques, yielding valuable information on the immediate and long-term effects of UV laser radiation on the paint materials. The analytical techniques include colorimetry, spectroscopic techniques, mass spectrometry and profilometry, as well as thermographic and UV transmission measurements. Furthermore, the application of the laser workstation on various painted artworks is shown. This includes the gradual removal of varnish layers and the recovery of original paint colour in fire-damaged paintings.The European Commission is gratefully acknowledged for facilitating the work in the Cooperative Research project “Advanced workstation for controlled laser cleaning of artworks” (ENV4-CT98-0787)
    corecore