33 research outputs found

    Transplantation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in a Swine Model of Geographic Atrophy

    Get PDF
    Modelo animal; Medicina regenerativa; RetinaModel animal; Medicina regenerativa; RetinaAnimal model; Regenerative medicine; RetinaBackground: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). Methods: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. Results: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. Conclusions: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA.This work was supported by Spanish Ministry of Science and Innovation (MICINN, RTI2018-095377-B-100), Instituto de Salud Carlos III ISCIII/FEDER (PRB2 PT13/0001/0041; TerCel RD16/0011/0024 and Oftared-RETICS RD16/0008), ERA-NET EuroNanoMed III/ISCIII (AC19/00080), the Catalan Government, AGAUR (2017-SGR-899), CERCA Programme/Generalitat de Catalunya, and by Fundació Carmen i Mª José Godó (Fundació CMJ Godó 2017)

    Controlling the Adsorption and Release of Ocular Drugs in Metal–Organic Frameworks: Effect of Polar Functional Groups

    Get PDF
    A series of UiO-66 materials with different functional groups (−H, −NH2, and −NO2) have been evaluated for the adsorption and release of a common ocular drug such as brimonidine tartrate. UiO-66 samples were synthesized under solvothermal conditions and activated by solvent exchange with ethanol. Experimental results suggest that the incorporation of surface functionalities gives rise to the development of structural defects (missing linker defects) but without altering the basic topology of the UiO-66 framework. These defects improve the adsorption performance of the parent metal–organic framework (MOF), while the bulkier functionalities infer slower release kinetics, with the associated benefits for prolonged delivery of brimonidine. Among the evaluated MOFs, defective UiO-66-NO2 can be proposed as the most promising candidate due to the combination of a larger brimonidine volumetric uptake (680 mg/cm3), a prolonged delivery (period of up to 25 days), a small particle size, and a larger instability. Contrariwise, at high concentrations UiO-66-NO2 has higher toxicity toward human retinal pigment epithelium cells (ARPE-19) compared to the pure and NH2-functionalized UiO-66.Authors would like to acknowledge financial support from the Ministerio de Ciencia e Innovación (Project PID2019-108453GB-C21), H2020 (Project MSCA-RISE-2016/NanoMed) and Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital (Project CIPROM/2021/022)

    Correlation between SD-OCT, immunocytochemistry and functional findings in an animal model of retinal degeneration

    Get PDF
    Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa (RP). The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT) and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg) and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz). Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer (ONL), and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration.Dr. Pinilla and Dr. Cuenca were supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER (BFU2012-36845), Instituto de Salud Carlos III (FIS PI13/01124, PS0901854, PI042399 and RETICS RD12/0034/0010), Fundación Gangoiti, ONCE (Organización Nacional de Ciegos Españoles) and FUNDALUCE. Dr. Yves Sauvé is a recipient of the Barbara Tuck/MacPhee Family Vision Research Award in Macular Degeneration

    Niosomes based on synthetic cationic lipids for gene delivery: The influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells

    Get PDF
    We designed niosomes based on three lipids that differed only in the polar-head group to analyze their influence on the transfection efficiency. These lipids were characterized by small-angle X-ray scattering before being incorporated into the niosomes which were characterized in terms of pKa, size, zeta potential, morphology and physical stability. Nioplexes were obtained upon the addition of a plasmid. Different ratios (w/w) were selected to analyze the influence of this parameter on size, charge and the ability to condense, release and protect the DNA. In vitro transfection experiments were performed in HEK-293, ARPE-19 and MSC-D1 cells. Our results show that the chemical composition of the cationic head-group clearly affects the physicochemical parameters of the niosomes and especially the transfection efficiency. Only niosomes based on cationic lipids with a dimethyl amino head group (lipid 3) showed a transfection capacity when compared with their counterparts amino (lipid 1) and tripeptide head-groups (lipid 2). Regarding cell viability, we clearly observed that nioplexes based on the cationic lipid 3 had a more deleterious effect than their counterparts, especially in ARPE-19 cells at 20/1 and 30/1 ratios. Similar studies could be extended to other series of cationic lipids in order to progress in the research on safe and efficient non-viral vectors for gene delivery purposes.This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), the National Council of Science and Technology (CONAYT), Mexico, Reg. # 217101, the Spanish Ministry of Education (Grant CTQ2010-20541, CTQ2010-14897), the Basque Government (Department of Education, University and Research, predoctoral BFI-2011-2226 grant), the Generalitat de Catalunya (2009SGR208, 2009SGR1331) and the Instituto de Salud Carlos III. Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged. Authors also wish to thank the intellectual and technical assistance from the platform for Drug Formulation (NANBIOSIS) CIBER-BBN.Peer reviewe

    Protamine/DNA/Niosome Ternary Nonviral Vectors for Gene Delivery to the Retina: The Role of Protamine

    Get PDF
    The present study aimed to evaluate the incorporation of protamine into niosome/DNA vectors to analyze the potential application of this novel ternary formulation to deliver the pCMS-EGFP plasmid into the rat retina. Binary vectors based on niosome/DNA and ternary vectors based on protamine/DNA/niosomes were prepared and physicochemically characterized. In vitro experiments were performed in ARPE-19 cells. At 1:1:5 protamine/DNA/niosome mass ratio, the resulted ternary vectors had 150 nm size, positive charge, spherical morphology, and condensed, released, and protected the DNA against enzymatic digestion. The presence of protamine in the ternary vectors improved transfection efficiency, cell viability, and DNA condensation. After ocular administration, the EGFP expression was detected in different cell layers of the retina depending on the administration route without any sign of toxicity associated with the formulations. While subretinal administration transfected mainly photoreceptors and retinal pigment epithelial cells at the site of injection, intravitreal administration produced a more uniform distribution of the protein expression through the inner layers of the retina. The protein expression in the retina persisted for at least one month after both administrations. Our study highlights the flattering properties of protamine/DNA/niosome ternary vectors for efficient and safe gene delivery to the rat retina.This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), by the Research Chair in Retinosis Pigmentosas “Bidons Egara”, the National Council of Science and Technology (CONACYT), Mexico, Reg. No. 217101, the Spanish Ministry of Education (Grant Nos. CTQ2010-20541, CTQ2010-14897), the Basque Government (Department of Education, University and Research, predoctoral BFI-2011-2226 grant), and by Spanish Grant Nos. MAT2012-39290-C02-01 and IPT-2012-0574-300000. Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged. The authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/EHU).Peer reviewe

    The influence of the polar head-group of synthetic cationic lipids on the transfection efficiency mediated by niosomes in rat retina and brain

    Get PDF
    The development of novel non-viral delivery vehicles is essential in the search of more efficient strategies for retina and brain diseases. Herein, optimized niosome formulations prepared by oil-in water (o/w) and film-hydration techniques were characterized in terms of size, PDI, zeta potential, morphology and stability. Three ionizable glycerol-based cationic lipids containing a primary amine group (lipid 1), a triglycine group (lipid 2) and a dimethylamino ethyl pendent group (lipid 3) as polar head-groups were part of such niosomes. Upon the addition of pCMS-EGFP plasmid, nioplexes were obtained at different cationic lipid/DNA ratios (w/w). The resultant nioplexes were further physicochemically characterized and evaluated to condense, release and protect the DNA against enzymatic digestion. In vitro experiments were performed to evaluate transfection efficiency and cell viability in HEK-293, ARPE-19 and PECC cells. Interestingly, niosome formulations based on lipid 3 showed better transfection efficiencies in ARPE-19 and PECC cells than the rest of cationic lipids showed in this study. In vivo experiments in rat retina after intravitreal and subretinal injections together with in rat brain after cerebral cortex administration showed promising transfection efficiencies when niosome formulations based on lipid 3 were used. These results provide new insights for the development of non-viral vectors based on cationic lipids and their applications for efficient delivery of genetic material to the retina and brain. © 2015 Elsevier Ltd.This project was partially supported by the University of the Basque Country UPV/EHU (UFI 11/32), the National Council of Science and Technology (CONACYT), Mexico, Reg. # 217101, the Spanish Ministry of Education (Grant CTQ2010-20541, CTQ2010- 14897), the Basque Government (Department of Education, University and Research, predoctoral BFI-2011-2226 grant) and by Spanish grants MAT2012-39290-C02-01 and IPT-2012-0574- 300000. Technical and human support provided by SGIker (UPV/ EHU) is gratefully acknowledged. Authors also wish to thank the intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/EHU).Peer reviewe

    Sphingolipid extracts enhance gene delivery of cationic lipid vesicles into retina and brain

    Get PDF
    [EN]The aim was to evaluate relevant biophysic processes related to the physicochemical features and gene transfection mechanism when sphingolipids are incorporated into a cationic niosome formulation for non-viral gene delivery to central nervous system. For that, two formulations named niosphingosomes and niosomes devoid of sphingolipid extracts, as control, were developed by the oil-in water emulsion technique. Both formulations and the corresponding complexes, obtained upon the addition of the reporter EGFP plasmid, were physicochemically and biologically characterized and evaluated. Compared to niosomes, niosphingosomes, and the corresponding complexes decreased particle size and increased superficial charge. Although there were not significant differences in the cellular uptake, cell viability and transfection efficiency increased when human retinal pigment epithelial (ARPE-19) cells were exposed to niosphingoplexes. Endocytosis via caveolae decreased in the case of niosphingoplexes, which showed higher co-localization with lysosomal compartment, and endosomal escape properties. Moreover, niosphingoplexes transfected not only primary central nervous system cells, but also different cells in mouse retina, depending on the administration route, and brain cortex. These preliminary results suggest that niosphingosomes represent a promising non-viral vector formulation purposed for the treatment of both retinal and brain diseases by gene therapy approach.This work was supported by the Basque Country Government (Department of Education, University and Research, Consolidated Groups IT907-16) . Additional funding was provided by the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , an initiative of the Carlos III Health Institute (ISCIII) . I.V.B. and M.S.R. thank the University of the Basque Country (UPV/EHU) for the granted postdoctoral fellowship (ESPDOC19/47) and the granted pre-doctoral fellowship (PIF17/79) , respectively. Authors wish to thank the intel-lectual and technical assistance from the ICTS "NANBIOSIS," more specifically by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) at the University of Basque Country (UPV/EHU) . Technical and human sup-port provided by SGIKER (UPV/EHU) is also gratefully acknowledged

    Assessment of Different Niosome Formulations for Optogenetic Applications: Morphological and Electrophysiological Effects

    Get PDF
    Gene therapy and optogenetics are becoming promising tools for treating several nervous system pathologies. Currently, most of these approaches use viral vectors to transport the genetic material inside the cells, but viruses present some potential risks, such as marked immunogenicity, insertional mutagenesis, and limited insert gene size. In this framework, non-viral nanoparticles, such as niosomes, are emerging as possible alternative tools to deliver genetic material, avoiding the aforementioned problems. To determine their suitability as vectors for optogenetic therapies in this work, we tested three different niosome formulations combined with three optogenetic plasmids in rat cortical neurons in vitro. All niosomes tested successfully expressed optogenetic channels, which were dependent on the ratio of niosome to plasmid, with higher concentrations yielding higher expression rates. However, we found changes in the dendritic morphology and electrophysiological properties of transfected cells, especially when we used higher concentrations of niosomes. Our results highlight the potential use of niosomes for optogenetic applications and suggest that special care must be taken to achieve an optimal balance of niosomes and nucleic acids to achieve the therapeutic effects envisioned by these technologies.This research was funded in part by grants RTI2018-098969-B-I00, PRE2019-087693, DTS19/00175, and PDC2022-133952-100 from the Spanish “Ministerio de Ciencia, Innovación y Universidades” and by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 899287 (NeuraViPeR)

    Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues

    Get PDF
    Non-viral vectors have emerged as a promising alternative to viral gene delivery systems due to their safer profile. Among non-viral vectors, recently, niosomes have shown favorable properties for gene delivery, including low toxicity, high stability, and easy production. The three main components of niosome formulations include a cationic lipid that is responsible for the electrostatic interactions with the negatively charged genetic material, a non-ionic surfactant that enhances the long-term stability of the niosome, and a helper component that can be added to improve its physicochemical properties and biological performance. This review is aimed at providing recent information about niosome-based non-viral vectors for gene delivery purposes. Specially, we will discuss the composition, preparation methods, physicochemical properties, and biological evaluation of niosomes and corresponding nioplexes that result from the addition of the genetic material onto their cationic surface. Next, we will focus on the in situ application of such niosomes to deliver the genetic material into immune-privileged tissues such as the brain cortex and the retina. Finally, as future perspectives, non-invasive administration routes and different targeting strategies will be discussed.This work was supported by the Basque Country Government (Department of Education, University and Research, pre-doctoral grant PRE_2016_2_0302 and Consolidated Groups IT907-16). Additional funding was provided by the University of Basque Country UPV/EHU (predoctoral grant PIF17/19), the CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and initiative of the Carlos III Health Institute (ISCIII)

    Transplantation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in a Swine Model of Geographic Atrophy

    Get PDF
    Background: The aim of this study was to test the feasibility and safety of subretinal transplantation of human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) cells into the healthy margins and within areas of degenerative retina in a swine model of geographic atrophy (GA). Methods: Well-delimited selective outer retinal damage was induced by subretinal injection of NaIO3 into one eye in minipigs (n = 10). Thirty days later, a suspension of hiPSC-derived RPE cells expressing green fluorescent protein was injected into the subretinal space, into the healthy margins, and within areas of degenerative retina. In vivo follow-up was performed by multimodal imaging. Post-mortem retinas were analyzed by immunohistochemistry and histology. Results: In vitro differentiated hiPSC-RPE cells showed a typical epithelial morphology, expressed RPE-related genes, and had phagocytic ability. Engrafted hiPSC-RPE cells were detected in 60% of the eyes, forming mature epithelium in healthy retina extending towards the border of the atrophy. Histological analysis revealed RPE interaction with host photoreceptors in the healthy retina. Engrafted cells in the atrophic zone were found in a patchy distribution but failed to form an epithelial-like layer. Conclusions: These results might support the use of hiPSC-RPE cells to treat atrophic GA by providing a housekeeping function to aid the overwhelmed remnant RPE, which might improve its survival and therefore slow down the progression of GA. Keywords: age-related macular degeneration (AMD); geographic atrophy; pig; animal model; stem cells; iPSC; RPE; retina; regenerative medicine; advanced cell therap
    corecore