14,670 research outputs found
Chaotic scattering with direct processes: A generalization of Poisson's kernel for non-unitary scattering matrices
The problem of chaotic scattering in presence of direct processes or prompt
responses is mapped via a transformation to the case of scattering in absence
of such processes for non-unitary scattering matrices, \tilde S. In the absence
of prompt responses, \tilde S is uniformly distributed according to its
invariant measure in the space of \tilde S matrices with zero average, < \tilde
S > =0. In the presence of direct processes, the distribution of \tilde S is
non-uniform and it is characterized by the average (\neq 0). In
contrast to the case of unitary matrices S, where the invariant measures of S
for chaotic scattering with and without direct processes are related through
the well known Poisson kernel, here we show that for non-unitary scattering
matrices the invariant measures are related by the Poisson kernel squared. Our
results are relevant to situations where flux conservation is not satisfied.
For example, transport experiments in chaotic systems, where gains or losses
are present, like microwave chaotic cavities or graphs, and acoustic or elastic
resonators.Comment: Added two appendices and references. Corrected typo
Comparison of solar photospheric bright points between SUNRISE observations and MHD simulations
Bright points (BPs) in the solar photosphere are radiative signatures of
magnetic elements described by slender flux tubes located in the darker
intergranular lanes. They contribute to the ultraviolet (UV) flux variations
over the solar cycle and hence may influence the Earth's climate. Here we
combine high-resolution UV and spectro-polarimetric observations of BPs by the
SUNRISE observatory with 3D radiation MHD simulations. Full spectral line
syntheses are performed with the MHD data and a careful degradation is applied
to take into account all relevant instrumental effects of the observations. It
is demonstrated that the MHD simulations reproduce the measured distributions
of intensity at multiple wavelengths, line-of-sight velocity, spectral line
width, and polarization degree rather well. Furthermore, the properties of
observed BPs are compared with synthetic ones. These match also relatively
well, except that the observations display a tail of large and strongly
polarized BPs not found in the simulations. The higher spatial resolution of
the simulations has a significant effect, leading to smaller and more numerous
BPs. The observation that most BPs are weakly polarized is explained mainly by
the spatial degradation, the stray light contamination, and the temperature
sensitivity of the Fe I line at 5250.2 \AA{}. The Stokes asymmetries of the
BPs increase with the distance to their center in both observations and
simulations, consistent with the classical picture of a production of the
asymmetry in the canopy. This is the first time that this has been found also
in the internetwork. Almost vertical kilo-Gauss fields are found for 98 % of
the synthetic BPs. At the continuum formation height, the simulated BPs are on
average 190 K hotter than the mean quiet Sun, their mean BP field strength is
1750 G, supporting the flux-tube paradigm to describe BPs.Comment: Accepted for publication in Astronomy & Astrophysics on May 30 201
Cellular automaton supercolliders
Gliders in one-dimensional cellular automata are compact groups of
non-quiescent and non-ether patterns (ether represents a periodic background)
translating along automaton lattice. They are cellular-automaton analogous of
localizations or quasi-local collective excitations travelling in a spatially
extended non-linear medium. They can be considered as binary strings or symbols
travelling along a one-dimensional ring, interacting with each other and
changing their states, or symbolic values, as a result of interactions. We
analyse what types of interaction occur between gliders travelling on a
cellular automaton `cyclotron' and build a catalog of the most common
reactions. We demonstrate that collisions between gliders emulate the basic
types of interaction that occur between localizations in non-linear media:
fusion, elastic collision, and soliton-like collision. Computational outcomes
of a swarm of gliders circling on a one-dimensional torus are analysed via
implementation of cyclic tag systems
Neutrino-induced nucleosynthesis of A>64 nuclei: The nu p-process
We present a new nucleosynthesis process, that we denote nu p-process, which
occurs in supernovae (and possibly gamma-ray bursts) when strong neutrino
fluxes create proton-rich ejecta. In this process, antineutrino absorptions in
the proton-rich environment produce neutrons that are immediately captured by
neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with
mass numbers A >64. Making this process a possible candidate to explain the
origin of the solar abundances of 92,94Mo and 96,98Ru. This process also offers
a natural explanation for the large abundance of Sr seen in an hyper-metal-poor
star.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
Surface waves in solar granulation observed with {\sc Sunrise}
Solar oscillations are expected to be excited by turbulent flows in the
intergranular lanes near the solar surface. Time series recorded by the IMaX
instrument aboard the {\sc Sunrise} observatory reveal solar oscillations at
high resolution, which allow studying the properties of oscillations with short
wavelengths. We analyze two times series with synchronous recordings of Doppler
velocity and continuum intensity images with durations of 32\thinspace min and
23\thinspace min, resp., recorded close to the disk center of the Sun to study
the propagation and excitation of solar acoustic oscillations. In the Doppler
velocity data, both the standing acoustic waves and the short-lived,
high-degree running waves are visible. The standing waves are visible as
temporary enhancements of the amplitudes of the large-scale velocity field due
to the stochastic superposition of the acoustic waves. We focus on the
high-degree small-scale waves by suitable filtering in the Fourier domain.
Investigating the propagation and excitation of - and -modes with wave
numbers \thinspace 1/Mm we find that also exploding granules
contribute to the excitation of solar -modes in addition to the contribution
of intergranular lanes.Comment: 12 pages, 4 figures, to appear in a special volume on Sunrise in
Astrophysical Journal Letter
Bright points in the quiet Sun as observed in the visible and near-UV by the balloon-borne observatory Sunrise
Bright points (BPs) are manifestations of small magnetic elements in the
solar photosphere. Their brightness contrast not only gives insight into the
thermal state of the photosphere (and chromosphere) in magnetic elements, but
also plays an important role in modulating the solar total and spectral
irradiance. Here we report on simultaneous high-resolution imaging and
spectropolarimetric observations of BPs using Sunrise balloon-borne observatory
data of the quiet Sun at disk center. BP contrasts have been measured between
214 nm and 525 nm, including the first measurements at wavelengths below 388
nm. The histograms of the BP peak brightness show a clear trend toward broader
contrast distributions and higher mean contrasts at shorter wavelengths. At 214
nm we observe a peak brightness of up to five times the mean quiet-Sun value,
the highest BP contrast so far observed. All BPs are associated with a magnetic
signal, although in a number of cases it is surprisingly weak. Most of the BPs
show only weak downflows, the mean value being 240 m/s, but some display strong
down- or upflows reaching a few km/s.Comment: Accepted for publication in The Astrophysical Journal Letters on
September 08 201
Improved faulted phase selection algorithm for distance protection under high penetration of renewable energies
The high penetration of renewable energies will affect the performance of present protection algorithms due to fault current injection from generators based on power electronics. This paper explains the process followed for analyzing this effect on distance protection and the development of a new algorithm that improves its performance in such a scenario. First of all, four commercial protection relays were tested before fault current contribution from photovoltaic system and full converter wind turbines using the hardware in the loop technique. The analysis of results obtained, jointly with a theoretical analysis based on commonly used protection strategy of superimposed quantities, lead to a conclusion about the cause of observed wrong behaviors of present protection algorithms under a high penetration of renewables. According to these conclusions, a new algorithm has been developed to improve the detection of faulted phase selection and directionality on distance protection under a short circuit current fed by renewable energy sources. © 2020 by the author
Sunrise: instrument, mission, data and first results
The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory
telescope, a UV filter imager, an imaging vector polarimeter, an image
stabilization system and further infrastructure. The first science flight of
Sunrise yielded high-quality data that reveal the structure, dynamics and
evolution of solar convection, oscillations and magnetic fields at a resolution
of around 100 km in the quiet Sun. After a brief description of instruments and
data, first qualitative results are presented. In contrast to earlier
observations, we clearly see granulation at 214 nm. Images in Ca II H display
narrow, short-lived dark intergranular lanes between the bright edges of
granules. The very small-scale, mixed-polarity internetwork fields are found to
be highly dynamic. A significant increase in detectable magnetic flux is found
after phase-diversity-related reconstruction of polarization maps, indicating
that the polarities are mixed right down to the spatial resolution limit, and
probably beyond.Comment: accepted by ApJ
Evidence of strong antiferromagnetic coupling between localized and itinerant electrons in ferromagnetic Sr2FeMoO6
Magnetic dc susceptibility () and electron spin resonance (ESR)
measurements in the paramagnetic regime, are presented. We found a Curie-Weiss
(CW) behavior for (T) with a ferromagnetic K and
, this being lower than that expected for
either or ions. The ESR g-factor , is associated with . We obtained an excellent description
of the experiments in terms of two interacting sublattices: the localized
() cores and the delocalized electrons. The coupled equations
were solved in a mean-field approximation, assuming for the itinerant electrons
a bare susceptibility independent on . We obtained
emu/mol. We show that the reduction of for
arises from the strong antiferromagnetic (AFM) interaction between the two
sublattices. At variance with classical ferrimagnets, we found that is
ferromagnetic. Within the same model, we show that the ESR spectrum can be
described by Bloch-Hasegawa type equations. Bottleneck is evidenced by the
absence of a -shift. Surprisingly, as observed in CMR manganites, no
narrowing effects of the ESR linewidth is detected in spite of the presence of
the strong magnetic coupling. These results provide evidence that the magnetic
order in does not originates in superexchange interactions,
but from a novel mechanism recently proposed for double perovskites
Nuclear DNA fragmentation in boar spermatozoa: measurement methods and reproductive performance implications
The aim of this research was to compare the different techniques to measure sperm nuclear DNA fragmentation (sDF) and to check its relations to boar reproductive value, classical spermiogram parameters, and reproductive results of the doses in sows. Sperm chromatin stability assay (SCSA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and sperm chromatin dispersion test (SCD, Halomax®) results were compared, finding a statistically significant correlation only between SCSA and TUNEL results. The fertility direct boar effect (DBE) index, calculated from the whole productive life of the boar, was not correlated (p > 0.05) with sDF (measured by any technique). Total or progressive sperm motility was not correlated with sDF, while it found a positive correlation between TUNEL measure and abnormal acrosomes (%) and between SCD measure and total sperm morphological abnormalities (%). No significant correlations were obtained between fertility or prolificacy results and sDF results with the different techniques. However, in the case of total born and SCSA measure, the correlation was close to significance (r partial = -0.095; p = 0.066), appointing to a tendency; as SCSA increases, the number of total piglets born decreases. In conclusion, although the different techniques for the sDF seem not to target exactly the same DNA events and the relationship between their values and the reproductive results and the classical spermiogram results is still to be elucidated, the studied sDF techniques may offer extra information that could be useful for the management of AI studs. Copyright © 2022 Ausejo, Martínez, Mendoza, Bolarin, Tejedor and Falceto
- …