1,415 research outputs found
Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories
© 2018, Institute of Engineering Mechanics (IEM). All rights reserved. Distributed Hybrid Testing (DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogeneous test apparatus and computational resources of geographically distributed laboratories, DHT provides the means to take on complex, multi-disciplinary challenges with new forms of communication and collaboration. To introduce the opportunity and practicability afforded by DHT, here an exemplar multi-site test is addressed in which a dedicated fibre network and suite of custom software is used to connect the geotechnical centrifuge at the University of Cambridge with a variety of structural dynamics loading apparatus at the University of Oxford and the University of Bristol. While centrifuge time-scaling prevents real-time rates of loading in this test, such experiments may be used to gain valuable insights into physical phenomena, test procedure and accuracy. These and other related experiments have led to the development of the real-time DHT technique and the creation of a flexible framework that aims to facilitate future distributed tests within the UK and beyond. As a further example, a real-time DHT experiment between structural labs using this framework for testing across the Internet is also presented
Two different types of malignant fibrous histiocytomas from pet dogs
We describe 2 cases of malignant fibrous histiocytomas (MFHs) that spontaneously developed in young pet dogs. To classify these tumors, we applied a panel of antibodies (vimentin, desmin, α-SMA, and ED1) and Azan staining for collagen. The MFHs were most consistent with osteoclast-like giant and inflammatory cell types. The first case had positive staining for ED1 and vimentin, and given the osteoclast-like giant cells, calcification sites accompanying peripheral giant cell infiltrates. The latter case, the inflammatory cell type, exhibited a storiform-pleomorphic variant of neoplastic cells, including an ossifying matrix. MFHs are among the most highly aggressive tumors occurring in soft tissue sarcomas in elderly dogs; however, MFHs have been poorly studied from a diagnostic point of view. Herein, we describe the histologic and immunohistologic features of MFHs in detail, thus classifying the subtypes of these tumors
A Case of Cardiac Cephalalgia Showing Reversible Coronary Vasospasm on Coronary Angiogram
Background Under certain conditions, exertional headaches may reflect coronary ischemia Case Report A 44-year-old woman developed intermittent exercise-induced headaches with chest tightness over a period of 10 months Cardiac catheterization followed by acetylcholine provocation demonstrated a right coronary artery spasm with chest tightness, headache, and ischemic effect of continuous electrocardiography changes The patient`s headache disappeared following ultra-arterial nitroglycerine injection Conclusions A coronary angiogram with provocation study revealed variant angina and cardiac cephalalgia, as per the International Classification of Headache Disorders (code 10 6) We report herein a patient with cardiac cephalalgia that manifested as reversible coronary vasospasm following an acetylcholine provocation test J Clin Neurol 2010;6:99-101*INT HEAD SOC HEAD, 2004, CEPHALALGIA S1, V24, P1, DOI DOI 10.1111/J.1468-2982.2004.00653.XChen SP, 2004, EUR NEUROL, V51, P221, DOI 10.1159/000078489Martinez HR, 2002, HEADACHE, V42, P1029Lanza GA, 2000, LANCET, V356, P998Lance JW, 1998, HEADACHE, V38, P315Lipton RB, 1997, NEUROLOGY, V49, P813Grace A, 1997, CEPHALALGIA, V17, P195BOWEN J, 1993, HEADACHE, V33, P238MELLER ST, 1992, NEUROSCIENCE, V48, P501VERNAY D, 1989, HEADACHE, V29, P350LEFKOWITZ D, 1982, ARCH NEUROL-CHICAGO, V39, P130
First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands
Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, though globally racemic, surfaces. A similar situation can be obtained for metal particles or clusters. Here we report the first separation of the enantiomers of a gold cluster protected by achiral thiolates, Au38(SCH2CH2Ph)24, achieved by chiral high-performance liquid chromatography. The chirality of the nanocluster arises from the chiral arrangement of the thiolates on its surface, forming 'staple motifs'. The enantiomers show mirror-image circular dichroism responses and large anisotropy factors of up to 4×10−3. Comparison with reported circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the chiroptical properties is minor
Human Endometrial Side Population Cells Exhibit Genotypic, Phenotypic and Functional Features of Somatic Stem Cells
During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women's cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC) population. Here we explore the hypothesis that human endometrial side population (SP) cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC
Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed
<p>Abstract</p> <p>Background</p> <p>Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals.</p> <p>Results</p> <p>The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean F<sub>ST </sub>of 0.074, G<sub>ST </sub>of 0.081 and R<sub>ST </sub>of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision.</p> <p>Conclusion</p> <p>Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the comprehensive management of these populations, which in combination with the actual breeding program to increase milk yield, will constitute a good strategy to preserve the breed.</p
Variable Mutation Rates as an Adaptive Strategy in Replicator Populations
For evolving populations of replicators, there is much evidence that the effect of mutations on fitness depends on the degree of adaptation to the selective pressures at play. In optimized populations, most mutations have deleterious effects, such that low mutation rates are favoured. In contrast to this, in populations thriving in changing environments a larger fraction of mutations have beneficial effects, providing the diversity necessary to adapt to new conditions. What is more, non-adapted populations occasionally benefit from an increase in the mutation rate. Therefore, there is no optimal universal value of the mutation rate and species attempt to adjust it to their momentary adaptive needs. In this work we have used stationary populations of RNA molecules evolving in silico to investigate the relationship between the degree of adaptation of an optimized population and the value of the mutation rate promoting maximal adaptation in a short time to a new selective pressure. Our results show that this value can significantly differ from the optimal value at mutation-selection equilibrium, being strongly influenced by the structure of the population when the adaptive process begins. In the short-term, highly optimized populations containing little variability respond better to environmental changes upon an increase of the mutation rate, whereas populations with a lower degree of optimization but higher variability benefit from reducing the mutation rate to adapt rapidly. These findings show a good agreement with the behaviour exhibited by actual organisms that replicate their genomes under broadly different mutation rates
- …