102 research outputs found

    Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    Get PDF
    Frontiers in Microbiology 6 (2015): 186 This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permissionA self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive) to 1.54-5.35 μM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ = Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45-50-fold induction), Hg2+ (30-fold) and finally Co2+ (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environmentsThis study was funded by MINECO grants CGL2010-15675 and CTM2013-45775-C2-2-

    Cuantificación de las erosión en un talud de Taganana mediante fotogrametría terrestre (Tenerife)

    Get PDF
    This paper provides an assessment of the potential of terrestrial photogrammetry to calculate erosion associated with surface runoff on hillsides near roads during recent periods. To do this we choose a road embankment located in a valley with hills which have developed abundant grooves erosion. The accuracy of the surveying tool is evident in the evaluation of small hillsides, but is impractical for the study of large hillsides with significant slopes, in which are unknown initial parameters of the topography

    Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms

    Full text link
    In the present study, the biocidal activity of three different metal organic frameworks (MOFs) based on Co (Co-SIM1), Zn (Zn-SIM1) and Ag (Ag-TAZ) has been evaluated towards one green alga and two cyanobacteria. These organisms are present in fresh- and seawater and take part in the early stages of the biofouling process. The biocidal activity of these materials was evaluated by measuring chlorophyll a concentration and by inhibition zone testing. After 24 h of exposure the three different MOFs caused > 50% of chlorophyll a concentration inhibition towards both cyanobacteria, however, although the green alga presented a great sensitivity for Ag-TAZ (reaching 90% of chlorophyll a concentration inhibition), it was much more resistant to the rest of MOFs. Bioavailability of these metals was studied using ICP-MS, the chemical speciation program Visual MINTEQ, and a heavy metal bioreporter bioanalytical tool. We have elucidated that the biocidal activity presented by these MOFs was due to the dissolved metals released from them and more exactly, it depended on the bioavailability presented by these metal ions, which was closely related with the free ion concentration. This article highlights the potential use of different MOFs as biocidal material towards photosynthetic organisms and reveals important differences in the sensitivity between these organisms that should be taken into account in order to increase the biocidal spectrum of these materialsThis research was supported by the Spanish Ministry of Economy, CTM2013-45775-C2-1-R and CTM2013-45775-C2-2-

    Neurogranin and Neurofilament Light Chain as Preclinical Biomarkers in Scrapie

    Get PDF
    Prion diseases are diagnosed in the symptomatic stage, when the neuronal damage is spread throughout the central nervous system (CNS). The assessment of biological features that allow the detection of asymptomatic cases is needed, and, in this context, scrapie, where pre-symptomatic infected animals can be detected through rectal biopsy, becomes a good study model. Neurogranin (Ng) and neurofilament light chain (NfL) are proteins that reflect synaptic and axonal damage and have been studied as cerebrospinal fluid (CSF) biomarkers in different neurodegenerative disorders. In this study, we evaluated Ng and NfL both at the protein and transcript levels in the CNS of preclinical and clinical scrapie-affected sheep compared with healthy controls and assessed their levels in ovine CSF. The correlation between these proteins and the main neuropathological events in prion diseases, PrPSc deposition and spongiosis, was also assessed. The results show a decrease in Ng and NfL at the protein and gene expression levels as the disease progresses, and significant changes between the control and preclinical animals. On the contrary, the CSF levels of NfL increased throughout the progression of the disease. Negative correlations between neuropathological markers of prion disease and the concentration of the studied proteins were also found. Although further research is needed, these results suggest that Ng and NfL could act as biomarkers for neurodegeneration onset and intensity in preclinical cases of scrapie

    Evidence of p75 neurotrophin receptor involvement in the central nervous system pathogenesis of classical scrapie in sheep and a transgenic mouse model

    Get PDF
    Neurotrophins constitute a group of growth factor that exerts important functions in the nervous system of vertebrates. They act through two classes of transmembrane receptors: tyrosine-kinase receptors and the p75 neurotrophin receptor (p75NTR ). The activation of p75NTR can favor cell survival or apoptosis depending on diverse factors. Several studies evidenced a link between p75NTR and the pathogenesis of prion diseases. In this study, we investigated the distribution of several neurotrophins and their receptors, including p75NTR, in the brain of naturally scrapie-affected sheep and experimentally infected ovinized transgenic mice and its correlation with other markers of prion disease. No evident changes in infected mice or sheep were observed regarding neurotrophins and their receptors except for the immunohistochemistry against p75NTR . Infected mice showed higher abundance of p75NTR immunostained cells than their non-infected counterparts. The astrocytic labeling correlated with other neuropathological alterations of prion disease. Confocal microscopy demonstrated the co-localization of p75NTR and the astrocytic marker GFAP, suggesting an involvement of astrocytes in p75NTR-mediated neurodegeneration. In contrast, p75NTR staining in sheep lacked astrocytic labeling. However, digital image analyses revealed increased labeling intensities in preclinical sheep compared with non-infected and terminal sheep in several brain nuclei. This suggests that this receptor is overexpressed in early stages of prion-related neurodegeneration in sheep. Our results confirm a role of p75NTR in the pathogenesis of classical ovine scrapie in both the natural host and in an experimental transgenic mouse model

    BAMBI and CHGA in Prion Diseases: Neuropathological Assessment and Potential Role as Disease Biomarkers

    Get PDF
    Prion diseases affect both animals and humans. Research in the natural animal model of the disease could help in the understanding of neuropathological mechanisms and in the development of biomarkers for human pathologies. For this purpose, we studied the expression of 10 genes involved in prion propagation in vitro in the central nervous system of scrapie-infected sheep. Dysregulated genes (BAMBI and CHGA) were further analysed in a transgenic murine model (Tg338) of scrapie, and their protein distribution was determined using immunohistochemistry and Western blot. Their potential as biomarkers was finally assessed using enzyme-linked immunosorbent assay (ELISA) in cerebrospinal fluid (CSF) of scrapie sheep and Creutzfeldt-Jakob disease (CJD) patients. Protein BAMBI was upregulated in highly affected brain areas and CHGA was overexpressed along the brain in both models. Moreover, BAMBI and CHGA immunostaining scores strongly correlated with spongiosis and microgliosis in mice. Finally, levels of BAMBI were significantly higher in the CSF of clinical sheep and CJD patients. In addition to their potential as biomarkers, our work confirms the role of BAMBI and CHGA in prion neuropathology in vivo, but besides prion replication, they seem to be involved in the characteristic neuroinflammatory response associated to prion infection

    Therapeutic Assay with the Non-toxic C-Terminal Fragment of Tetanus Toxin (TTC) in Transgenic Murine Models of Prion Disease

    Get PDF
    The non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease or Alzheimer's disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models

    Understanding nanoplastic toxicity and their interaction with engineered cationic nanopolymers in microalgae by physiological and proteomic approaches

    Full text link
    The amount of plastics produced per year is in constant growth alongside their use in different sectors like the textile industry, agriculture or, more recently, in nanotechnology. Under certain environmental conditions, plastics break down into smaller pieces. Those plastics in the nanosize range are the most difficult to identify, quantify and remove and therefore probably prevail in aquatic ecosystems. Likewise, nanomaterial production has been increasing exponentially and therefore their potential release to the environment poses a threat. There is a lack of knowledge regarding the combined effects of co-occurring nanopolymers on biota. In this work, we have studied the individual toxicity of polystyrene nanoplastics (PS-NPs) as well as their combined effect with generation 7 PAMAM dendrimers (G7) on the filamentous cyanobacterium Anabaena sp. PCC7120, a relevant aquatic primary producer. Exposure to PS-NPs induced the overproduction of reactive oxygen species, lipid peroxidation, membrane disruptions, intracellular acidification and a decrease in photosynthetic activity. Internalization of the nanoplastics was also observed. Combined exposure to PS-NPs and G7 lowered PS-NP toxicity and precluded their internalization. This antagonistic interaction was due to the formation of heteroaggregates. Molecular biomarkers (differentially expressed proteins, DEPs) of the toxic effect of nanoplastics, G7 and their binary mixture were identified for the first time. These molecular biomarkers may be envisaged as a molecular signature of the toxic effect of the nanopolymers and could be predictors of cellular damage caused by exposure to nanopolymer
    • …
    corecore