4,372 research outputs found

    Gravitational lensing by wave dark matter halos

    Get PDF
    Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of ma=10−22eVm_a=10^{-22}{\rm eV}, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses 10−2310^{-23} -- 10−22eV10^{-22}{\rm eV}, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of 10−21eV10^{-21}{\rm eV}, which would be consistent with Lyman-α\alpha constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound ma>10−24m_a > 10^{-24} and that the NFW envelope around the soliton must be present to satisfy the observational requirements.Comment: 26 pages, 7 figures, Publishe

    The pre-main sequence spectroscopic binary UZ Tau East: improved orbital parameters and accretion phase dependence

    Full text link
    We present radial-velocity measurements obtained using high- and intermediate-resolution spectroscopic observations of the classical T Tauri star UZ Tau East obtained from 1994 to 1996. We also provide measurements of Hα\alpha equivalent widths and optical veiling. Combining our radial-velocity data with those recently reported by Prato et al. (2002), we improve the orbital elements for this spectroscopic binary. The orbital period is 18.979±\pm0.007 days and the eccentricity is e=0.14. We find variability in the Hα_\alpha emission and veiling, signposts of accretion, but at periastron passage the accretion is not as clearly enhanced as in the case of the binary DQ Tau. The difference in the behaviour of these two binaries is consistent with the hydrodynamical models of accretion from circumbinary disks because UZ Tau East has lower eccentricity than DQ Tau. It seems that enhanced periastron accretion may occur only in systems with very high eccentricity (e>>0.5).Comment: accepted for publication in A&

    A possible third component in the L dwarf binary system DENIS-P J020529.0-115925 discovered with the Hubble Space Telescope

    Get PDF
    We present results showing that the multiple system DENIS-P J020529.0-115925 is likely to be a triple system of brown dwarfs. The secondary of this previously known binary system shows a clear elongation on six images obtained at six different epochs. Significant residuals remain after PSF subtraction on these images, characteristic of multiplicity, and indicating that the secondary is probably a double itself. Dual-PSF fitting shows that the shape of the secondary is consistent with that of a binary system. These measurements show that the probability that DENIS-P J020529.0-115925 is a triple system is very high. The photometric and spectroscopic properties of the system are consistent with the presence of three components with spectral types L5, L8 and T0.Comment: 15 pages, 3 tables, 6 figures, accepted for publication in AJ. High resolution version available at ftp://ftp.mpe.mpg.de/people/hbouy/publications/denis0205.ps.g

    Discovery of very nearby ultracool dwarfs from DENIS

    Full text link
    We report new spectroscopic results, obtained with UKIRT/CGS4, of a sample of 14 candidate ultracool dwarfs selected from the DENIS (Deep Near-Infrared Survey of the Southern Sky) database. A further object, selected from the 2MASS Second Incremental Release, was observed at a later epoch with the same instrument. Six objects are already known in the literature; we re-derive their properties. A further four prove to be very nearby (~10 pc) mid-to-late L-dwarfs, three unknown hitherto, two of which are almost certainly substellar. These findings increase the number of L-dwarfs known within ~10 pc by ~25%. The remainder of the objects discussed here are early L or very late M-type dwarfs lying between ~45 and 15 pc and are also new to the literature. Spectral types have been derived by direct comparison with J-,H- and K- band spectra of known template ultracool dwarfs given by Leggett et al. (ftp://ftp.jach.hawaii.edu/pub/ukirt/skl/dL.spectra/) For the known objects, we generally find agreement to within ~1 subclass with previously derived spectral types. Distances are determined from the most recent M_J vs. spectral type calibrations, and together with our derived proper motions yield kinematics for most targets consistent with that expected for the disk population; for three probable late M-dwarfs, membership of a dynamically older population is postulated. The very nearby L-type objects discussed here are of great interest for future studies of binarity and parallaxes.Comment: 4 pages, 2 figures, accepted in A&A Letter

    The entangling side of the Unruh-Hawking effect

    Full text link
    We show that the Unruh effect can create net quantum entanglement between inertial and accelerated observers depending on the choice of the inertial state. This striking result banishes the extended belief that the Unruh effect can only destroy entanglement and furthermore provides a new and unexpected source for finding experimental evidence of the Unruh and Hawking effects.Comment: 4 pages, 4 figures. Added Journal referenc
    • …
    corecore