157 research outputs found

    Displaced vertices and long-lived charged particles in the NMSSM with right-handed sneutrinos

    Get PDF
    We study LHC signatures of displaced vertices and long-lived charged particles within the context of the Next-to-Minimal Supersymmetric Standard Model with right-handed (RH) sneutrinos. In this construction the RH neutrino can be produced directly from Higgs decays or in association with a RH sneutrino when the latter is the lightest supersymmetric particle. The RH neutrino is generally long-lived, since its decay width is proportional to the neutrino Yukawa, a parameter which is predicted to be small. The RH neutrino late decay can therefore give rise to displaced vertices at the LHC, which can be identified through the decay products, which involve two leptons (2ℓ + https://static-content.springer.com/image/art%3A10.1007%2FJHEP05%282014%29035/MediaObjects/13130_2014_8145_Figa_HTML.gifT ) or a lepton with two jets (ℓjj). We simulate this signal for the current LHC configuration (a centre of mass of 8 TeV and an integrated luminosity of LL = 20 fb−1), and a future one (13 TeV and LL = 100 fb−1). We show that a region of the parameter space of this model can be probed and that the RH neutrino mass can be reconstructed from the end-point of the two-lepton invariant mass distribution or the central value of the mass distribution for two jets plus one lepton. Another exotic signature of this construction is the production of a long-lived stau. If the stau is the next-to-lightest supersymmetric particle, it can decay through diagrams involving the small neutrino Yukawa, and would escape the detector leaving a characteristic trail. We also simulate this signal for various benchmark points and show that the model can be within the reach of the future run of the LHC

    Experimental and theoretical investigations on a CVD grown thin film of polymeric carbon nitride and its structure

    Get PDF
    A polymeric carbon nitride thin film has been grown using chemical vapor deposition. The characterization of the material shows that it has the same molecular composition as a formerly synthesized graphitic carbon nitride powder but both substances differ widely in their structural organization. In particular, our analyses reveal a paradoxical character in which the thin film sample exhibits simultaneously a high degree of organization in the stacking of the polymer sheets with strong inter-layer interactions, as expected from the growth technique, and a complete lack of crystallinity. A comprehensive theoretical study based on massive semi-empirical quantum chemistry computations has permitted to explain the properties of the material and to elucidate fundamental issues regarding the structural conformation of graphitic carbon nitride

    Non-perturbative effective field theory for two-leg antiferromagnetic spin ladders

    Get PDF
    We study the long wavelength limit of a spin 1/2 Heisenberg antiferromagnetic two-leg ladder, treating the interchain coupling in a non-perturbative way. We perform a mean field analysis and then include exactly the fluctuations. This allows for a discussion of the phase diagram of the system and provides an effective field theory for the low energy excitations. The coset fermionic Lagrangian obtained corresponds to a perturbed SU(4)_1/U(1) Conformal Field Theory (CFT). This effective theory is naturally embedded in a SU(2)_2 x Z_2 CFT, where perturbations are easily identified in terms of conformal operators in the two sectors. Crossed and zig-zag ladders are also discussed using the same approach.Comment: 14 pages LaTeX, 5 PostScript figures included using epsfig.sty; minor corrections and a few references adde

    Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space

    Get PDF
    A quantitative test for the validity of the semi-classical approximation in gravity is given. The criterion proposed is that solutions to the semi-classical Einstein equations should be stable to linearized perturbations, in the sense that no gauge invariant perturbation should become unbounded in time. A self-consistent linear response analysis of these perturbations, based upon an invariant effective action principle, necessarily involves metric fluctuations about the mean semi-classical geometry, and brings in the two-point correlation function of the quantum energy-momentum tensor in a natural way. This linear response equation contains no state dependent divergences and requires no new renormalization counterterms beyond those required in the leading order semi-classical approximation. The general linear response criterion is applied to the specific example of a scalar field with arbitrary mass and curvature coupling in the vacuum state of Minkowski spacetime. The spectral representation of the vacuum polarization function is computed in n dimensional Minkowski spacetime, and used to show that the flat space solution to the semi-classical Einstein equations for n=4 is stable to all perturbations on distance scales much larger than the Planck length.Comment: 22 pages: This is a significantly expanded version of gr-qc/0204083, with two additional sections and two new appendices giving a complete, explicit example of the semi-classical stability criterion proposed in the previous pape

    A vertical diatomic artificial molecule in the intermediate coupling regime in a parallel and perpendicular magnetic field

    Get PDF
    We present experimental results for the ground state electrochemical potentials of a few electron semiconductor artificial molecule made by vertically coupling two quantum dots, in the intermediate coupling regime, in perpendicular and parallel magnetic fields up to 5 T. We perform a quantitative analysis based on local-spin density functional theory. The agreement between theoretical and experimental results is good, and the phase transitions are well reproduced.Comment: Typeset using Revtex, 13 pages and 8 Postscript figure
    • …
    corecore