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We study the long wavelength limit of a spﬁHeisenberg antiferromagnetic two-leg ladder, treating the
interchain coupling in a nonperturbative way. We perform a mean field analysis and then include the fluctua-
tions in an exact way. This allows for a discussion of the phase diagram of the system and provides an
effective-field theory for the low-energy excitations. The coset fermionic Lagrangian obtained corresponds to
a perturbedSU(4),/U(1) conformal field theory(CFT). This effective theory is naturally embedded in a
SU(2),XZ, CFT, where perturbations are easily identified in terms of conformal operators in the two sectors.
Crossed and zigzag ladders are also discussed using the same approach.
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I. INTRODUCTION The picture that emerges from the weak-coupling analysis
leads to a description in terms of a triplet of massive Majo-
Antiferromagnetic Heisenberg spin ladders have been sana fermions and a singlet Majorana fermion with a differ-
subject of central interest during the last years. These arent masgwhich has been estimated to be minus three times
intermediate systems between the gapless critical Spin-the triplet mass* The only interactions between these fermi-
Heisenberg chain and the ordered spirwo-dimensional ons are marginal current-current terms, which have been ar-
system relevant for undoped cuprate superconductors. Thgued to simply renormalize their masses and velocities. A
simplest realization, i.e., the two-leg ladder, shows a draquestion that has risen in recent studies of the Raman-
matically different excitation spectrum with respect to one ofscattering spectrurhis whether marginal interactions can in
an isolated chain. It has a finite gap to the first excitation andact be disregarded. In particular, correlation functions ob-
magnetic correlations are short range. Several inorganitained disregarding marginal interactions apparently do not
compounds have been recently synthesized and modeled fiisexperimentssee, e.g., Ref.)6
Heisenberg ladders. Exponential decay of the low- In this work we analyze the complete phase diagram of
temperature magnetic susceptibility was the first signal of thehe two-leg antiferromagnetic ladder. Our approach, first
existence of a spin gap in two-leg ladder materials. Neutromsed here for spin ladders, starts from a fermionic represen-
and optical measurements also manifest the presence oftation of the spin operators in the functional-integral frame-
gap and are consistently described by a two-leg ladder mode&lork, as introduced in Refs. 7-9 for spin chains. With a
with exchange integrals of the same order in the chains disimple ansatz to the mean-figldlF) configurations we show
rection (J) and along the rungsJ(). that the system undergoes a crossover from a weak- to a
Theoretically, the existence of a gap was predicted earlgtrong-coupling regime at an intermediate valug @dfl. We
from numerical exact diagonalization and strong couplingthen introduce fluctuations around MF and take them into
perturbation theory J/J'<1)2? More recently field- account at all orders to construct the low-energy effective-
theoretical techniques have been used to analyze the excitfeld theory.
tion spectrum in the weak-coupling regimé’(J<1).3* The resulting theory corresponds to a coset conformal
These treatments give access to the whole low energy exclield theory(CFT) of symmetrySU(4),/U(1);s,, perturbed
tation spectrum as well as to the dynamical susceptibilitieby relevant operator&f dimension 2 and marginal opera-
that are essential to comparing with experimental probesors(of dimension 2) arising from the single occupancy con-
The philosophy underlying this study is the following: spin straint as well as from the amplitude fluctuations of the link
operators are expressed in the well-known bosonized reprédields introduced to decouple the fermionic interactions. It
sentation of each chain and the interchain coupling is treateshould be noted that our approach is based on the assumption
as a small perturbation in this representation. The applicabilthat the local single occupancy constraint can be imple-
ity of these studies is then valid in principle only in the mented as a very last step, while it is taken into account
weak-coupling regime and its use in the description of, e.g.globally from the beginning. The correctness of this proce-
the experimentally realized two-leg ladders in whidh  dure is not guaranteed from first principles, but is supported
~J/2 should be taken with some care. It is therefore nota posteriori
clear up to which value o8'/J the results of Refs. 3 and 4 We show that the complete structure of these perturba-
are applicable, and it is important to develop theoreticakions can be retained and that they take a simple form in the
methods that could be used beyond the weak coupling rdanguage of conformal embeddings. In particular, the mar-
gime. ginal terms that arise can be easily classified in the new
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language and their effect can then be studied in a nonpertur- N2 /5

bative way. When the relevant perturbations are expressed in H=-> > (—cl(gcﬂll oy 5ol
the embedded®U(2),XZ, CFT language the spectrum is is1iE112 ' s
naturally separated in the triplet and singlet of Majorana fer- 7

mions. These results, which are valid up}tdJ~8/7?, ex- + —clOcll* Vel (D)
tend to finite coupling the weak-coupling study of Ref. 4. It 4 ne ' '
should be stressed that recent estimates of the ratio of exghereC= — N/2 is an irrelevant constant term.

change constants lead to valuesJofJ arounds in several We now trade Eq(4) for a quadratic Hamiltonian via a
cuprate materialt’ Hubbard-Stratonovich transformation, at the usual price of

In order to illustrate the generality and ease of use of oUfntroducing auxiliary fieldsB{’ associated to terms contain-
approach, it is then applied to the so-called crossed laddets, () () gng B/ associated to terms containing

+1l,av¥n,a?

. . H n '
and zigzag ladders. Phase diagrams and low-energy theongsaﬂ)ca)ﬁ_ It is natural to interpreBﬂ) as localized on the

; . i > = Cog Ch
are obtained in the region containing the weak couphnqeg (1) links between sites andn+ 1, andB}, as localized on

limit; further analysis and details will be considered else- . . o
y the rung links. After the transformation the Hamiltonian

where. reads
The paper is organized as follows. In Sec. Il we introduce

the model, present Hubbard-Stratonovich decoupling tech-
niques, and perform a MF analysis, discussing the resulting, —
phase diagram. In Sec. Ill we construct the low energy
effective-field theory: our theory contains four Dirac fermi- , 5
onic species corresponding to the spin and band indices of n J_ z E (
the ladder. In Sec. IV we show that the theory has a natural 4

relation toSU(2),X Z, CFT through conformal embedding

(the last part arises from the two electronic banés Sec. V ®)
we briefly report results on crossed and zigzag ladders. Fi-
nally, in Sec. VI the conclusions and possible further devel
opments of our method are given.

+C, 4

2

J
2 h=1

2
2, (Benden)y o+ Brci seh )+ B BY)

Brehielo )+ Bl el Vel + Bl BY).
n=11=1 ' ' ' '

As we look for a low-energy effective theory, we treat the
B variables in a long-wave approximation. To this end, we
parametrize these fields in terms of real MF valuBg,B)
and fluctuations
Il. MEAN-FIELD ANALYSIS
We consider the Heisenberg Hamiltonian for a two-leg Bh =BoexpiaAl’+aR{), B/=BgexpiaA,+aRy).
spin+ ladder, (6)
Notice that we have included both phase and amplitude fluc-
1) tuations, which will play important different roles in the fol-
lowing. For this reason, we explicitly distinguish the Hermit-

whereN is the number of sites along the chains, ahe0 ian (Y Ry") and anti-Hermitian iy, iA,") parts of the

and J'>0 are the couplings between adjacent spins alonfluctggtion fields,. The expression f&, will be eventually
the legs and rungs respectively. For mathematical convé;{”odlflecj \_NhenBOZO [see Eq(31)]. _
nience we assume periodic boundary conditions in both di- AS. a _f|rst step, we perform the MF evaluation of the
rections(notice that the Hamiltonian is suitably written for Hamlltonlan ) by setting the quctugtlons_ to zero. The re-
arbitraryn-leg ladders; in the present case the physical Cou_sultlng MF Ham_lltonlan is then a tight-binding model for
pling along the rungs is in effec’). two coupled chains,

The spin variables can be represented in terms of fermi-

N 2
i ith spic!
onic operators with spie,’, as Ho = _tnzl 21 (ct0ct) )+t )

N 2
Sy = J . -
HZ”Z:H:E:L Jﬁl)'Sgh*'?Sg)'SgH)

>

20)_ %8
8= 0, @

N
AN 8N
2t 2 (eplerlh enFeny) gttt

whereo are Pauli matrices, together with a local constraint

that ensures one spin per site, imposed on the physical states @)
by where
chle.Iphys =[phys. 3 3B, vB

Throughout this paper we will not use the summation con- t=- 2 t=- 4 - ®
vention for neither site nor leg indices; repeated $fireek
indices are summed. The coupled tight-binding model is easily diagonalized by

Using Egs.(2) and(3) the Hamiltonian(1) can be rewrit- means of a double Fourier transform. We first decouple two
ten as bands by means of
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1 _
Ciﬁi=ﬁ(0(nﬁ3 —ci D), ©9)
(2) 1 () L ()
Cn,a:_(cn,a+cn,a) (10)

V2

and then introduce pseudomomentum operadbrs,d(~) by

1 2mmn
= 3 diled <20 @
, \/m =, ,
_n o'j(o T
i La
) 1 X ) _2mmn :
Cn'a:\/ﬁ mZ1 dm’aex -l N ’ (12) FIG. 1. Dispersion relation for the two-band tight-binding
- model.
in terms of which the Hamiltonian reads
y ) (k)=—2t cogka) + 2t’. (17
27 i i '
Ho—— S |2t cos(Wm Lot it thenguZE(r)rgl momentum for each band is defined through
m=1 ' '
% . 5(277 ) ot | HO)g) eIkED) = ekE). (18)
- co§ —m|—
m=1 N e mma The local constraint in Eq.3) leads to the global constraint
N+ NI =2N, whereN*) is the occupation humber op-
N ﬂtZJrﬂt’z (13  erator for each band. Besidé¢| ™) = (2Na/m)kE) . We thus
J J obtain
This expression clearly represents a decoupled two-band (=) t" J'B}
tight-binding model. cogkg ‘a)= =555, (19
The constrain{3), meaning one electron per site, forces 0
the system to be exactly at half filling. Low-energy excita- (+)— ()
. ! . i ki ’/=mla—kg’, (20
tions are then achieved by creating holes just below the
Fermi surface and creating electrons just abové Notice  these implying
that this can be done only if
E(+)(k(F+)): 6(*)(k(F*)):0_ (21)

t|<tl, (14)

that is, when the Fermi level crosses both bands. If this cong, o energy of Eq(15)
dition is not satisfied, the system presents a finite-energy gap

to spin excitations.

The actual values dfandt’ are determined by minimiz-
ing the energy of Eq(13). In order to perform this evalua-
tion we introduce a lattice spacirggand a position coordi-
nate x=na (xe[0L=Na]); the appropriate
pseudomomentum  coordinate isk=m2m/(Na) (k
e[ —m/a,w/a]). The mean-field Hamiltonian then reads

L mla
Hmf:__f [2t cogka)+2t"1d! P (k)d( ) (k)dk
27 —mla “ “

mla

[2t cogka)—2t'1d! ) (k)d{ ) (k)dk

2w —mla
sy B 15
5 g ’ ( )

from which we can read the dispersion relations for each

band, sketched in Fig. 1,

eM)(k)=—2t cogka)—2t’, (16)
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E(k)

The values of andt’ are now determined by minimizing
under half-filling conditions,

L () :
Eni=— EJ'k(FH[Zt cogka)+2t']2dk

L Jk(;) ot cogka)— 261 2 kit =24 oo g2
% 7k§;)[ cogka) ] ﬁ g .
(22

Notice thatt<<O just inverts the cosine curves, translating the
Brillouin zone considered imr/a, andt’ <0 would just trade

the roles of the two bands. Then, the relevant sector in the
t,t’ plane ist=0 andt’=0. In this sector, the expression for
the energy is

amT . B B
T Emr=—8t sinkta) — 4t (7— 2k a)

8
+ —t2+ J—,t’z, t'<t, (23

J

and
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amr A 8 ve=2tasin(kga)=2Ja/w (28
T Emr= 4t + 512+ Tt’z, t'>t. (29
is the Fermi velocity anc[fi=‘lffy0. All four W fields have

The analysis of the above equations shows thatJfor the same Fermi velocity, and the model, up to this point,
<8/72J, the MF configuration depicts two bands that coin- POssesses a manifed(4) symmetry.
cide with those corresponding to two decoupled chains (
=J/7,t'=0), with Fermi momentum kg=k{ )=k B. Fluctuations around mean field
=/(2a). Notice that the condition in E¢14) holds and the
linearization procedure around this minimum is valid.

On the contrary, fod’ > (8/7?)J, we find that the global
energy minimum corresponds to the point0,t'=J'/4
where the condition in Eq(14) does not hold(notice that D. o
there is still another local minimum whil& <2J). The sys- In_ (_)rder to keep traqk o_ﬁ orders, Itis U.S.erI to make
tem in this configuration, that describes the strong couplin .X.p|ICIt the ordera contribution of fermion bilinears by de-

We include now the fluctuation field8(" ,B{?),B! . As
we look for the continuum limit of the Hamiltoniafb), we
will keep only relevant powers ia, as compared with Eq.

phase presents a finite-energy gap to spin excitations. ining
In the following two sections we will explore thé’ (1) o1 (L)
<8/m?J region. Zy'=a "Cq'Chiig,
lll. FLUCTUATIONS AND CONSTRAINTS: THE P=a 1c!@c@ (29)
SU(4),/U(1) COSET THEORY ' '
In this section we take the continuum limit of the MF z¥=a 1/ |

Hamiltonian in Eq(13) and then include fluctuations around
MF and constraints in Eq3). The outcome of this procedure so that the leading order for eazlis a°. Notice thatz® and

is a perturbedsU(4),/U(1) coset theory. z? still have to be expanded, as{ 1)a=x+a; the only
relevant term in this expansion is that linearaincontaining
A. Low-energy linearization in the thermodynamical first derivatives ofys fields. Our notation will be

continuum limit

In the region we consided( < 8/72J) the mean-field dis- _ _ _
persion relation consists of two coinciding bands of ampli- z=w{+av{) (30)
tude 2J/7. Linearization of low-energy excitations can be
done aroundke=7/(2a) in the usual way. The bandwidth (notice thatv(>=0).
will limit the validity of the resulting effective field theory to The relevant expansions for thfields, taking into ac-
energies much smaller thah independently of’. count that the MF value dB| vanishes, are

Low-energy excitations in the thermodynamical con-
tinuum limit of the tight-binding model at half filling can be
linearized in terms of Dirac fermiors.Fermionic position Bﬁ')IBO+iaBoAﬂ)JraBoRﬂ)JrO(az), (1=1,2
space operators™) for each band are readily written in
terms of Dirac fermions)(™)(x) as (31)
el = Val expt — ikex) g J(X) + explikgx) wﬁ,tz(xn,(za B! =iaA/+aR’+0(a?).
ng,a): \/E[exr(—ikFx)w(Rfi(xHexp(ikFx) 'P(LTCZ(X)]- In particular, the terms quadratic Bimust be expanded as

(26)

Here y&') and (") stand for the right and left components
of a Dirac spinor\Ifﬁf) and so on. Dirac gamma matrices are (32
taken asy,=o0,y1=0,. Notice that there is a total of four

Dirac fermion species; using the notatiar=1,| they are B.'B/=a’A’2+a’R’2.
(+,1),(=.1),(+,1),(—=,1), which will be respectively de-

noted Wi(x) with i=1,2,3,4. Summation over repeated sing all of these, and making explicit the sums ober

B/ OB =B3+2aB3RY +2a’B3RM2, (1=1,2

fermion-species indices will be understood. =1,2, the effective low-energy Hamiltonian for E) is
We arrive then at the linearized MF Hamiltonian written as
Hmf=uFf dXW;(X) y1,Wi(X), (27 Herr=HO+H@+H®+0(a?%), (33
where where
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N
J J
HO=-NB3+ = 21 aBo(z(N+ 2] M)

. (34

(&

N
5 2 1aBAlD (Wi —wi®)

N

N

a[aBoRM (WP +w! @)
2 h=1

+2B2R(M+2aB2R(M?],

N
2 aBy(2+ 2! (@)

n=1

H<2)—£NB§+ )

2

[

N
Z ZBOAEZ)(WETZ)_Wx(Z))

I'\J

N
J
+5 n; a[aBoRP (W +w/?) + 2B2R?)
+2aB2R2?), (35)

N
J’ ) ,
5 2 @AW - wi )+ AT

n=1

HE® =

N

)

/

a[R,(W®+w!®)+R'2]. (3¢

The main things to notice here are:

(i) There are irrelevar(divergenj constant terms. This is
expected from the combination of Hubbard-Stratonovich an
MF techniques.

(i) The terms without fluctuations iH*) andH® pro-
vide the two decoupled chains MF results discussed in th
previous section.

(i) The AL and A® fields act as Lagrange multipliers;
their total contribution to the effective action in the con-
tinuum limit reduces to a term

158 [ T 007w 00 1A 0 + AP0
F[Pi(X) y2( 010 1) ¥ (O[AD () - AG(x) ]}, (37)

In the notation of Eq.(37) the first matrix ;) refers to
isospin indices ¢),(—), while the second on€l) refers to
spin indicesf, | .

(iv) The presence of a quadratic term in thefield, with
proper sign, allows for a trivial Gaussian integration. The
same can be done with the fields. These of course bring
back the original spin-spin rung interactions. In the presen

PHYSICAL REVIEW B 63 144408

J’

11:2

FIG. 2. Phase diagram of the spin ladder. Bold bonds corre-
spond to nonzero links in the MF approximation.

e 2 (WD + Wi D)2 4 (W@ 4 w)2]

1,2 N
s wOW®. (39)

2 =1
The continuum form of these quartic perturbations in terms
of Dirac fermions is lengthy. We will write them down be-
low, after introducing a convenient notation.

We notice that forJ’' <8/72J, our approach leads to a
description of the system that is the same as the one obtained
in perturbative treatments, in principle valid fdt<J.*!?In
particular, the first two terms in EJ38) give rise to the
well-known marginally irrelevant perturbation terms in the

dndmdual chains. However, our approach does not rely on

any perturbative treatment df and in particular allows for
the determination of the phase diagram of the system, i.e.,
predicts a critical value of the ratid’/J that separates the
two different regimes in the two-leg ladder. The situation is
depicted in Fig. 2.

Moreover, we show in the next section that the weak-
coupling structure unraveled in Ref. 4 arises naturally within
our approach.

it

C. Constraints

In this section we express the constrai@5sin terms of
the linearized fermion fields and discuss how to implement
them in the evaluation of the partition function for the spin
ladder.

In the continuum limit the constraint on the occupation
number at each sitd,n separates in four parts, correspond-
ing to oscillating and nonoscillating terms associated to each
band. They read

WivoVi

=const, (39

t

scheme their contribution includes quadratic terms indhe which, implemented through a Lagrange multiplay, pro-
operators that lead to a redefinition of the Fermi velocityvides the time component of a gauge field implementing a
vr—v§/2 and quartic perturbations that can be arranged asliagonalU(1) coset constraira, = (ag, A +A?);
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v, yo(a1®1);W;=0, (40) All of this is most easily shown in the bosonized version

of the coset CFT. To this end we write fermion bilinears
which, implemented through a Lagrange multiplgy;, pro-  a4316

vides the time component of a second gauge field imple-
menting the isospinU(1) coset constrainb,, = (by, A Ligl =Ml (48)
—A(2)). These last two constraints

whereM is a renormalization constant, and we have intro-

\I_fi\lfizo, (42) duced bar indices in order to distinguish components trans-
o forming in the right and left fundamental representations of
Vi(o®1);;¥;=0 (42)  SU(4);. The O subindex indicates the fundamental repre-

sentation in the standard Young tableaux notation. In identi-
nI‘ying the twoSU(2), sectors we find it is useful to keep the
original spin and isospifband indices, writing

lead to marginally irrelevant quartic perturbation terms whe
implemented through

.
8(O(x))e< lim @™ 70 (00X, (43 Ty

e =D, (49
just as in the case of decoupled chains. where we now use,b for (+),(—).

To conclude this section, we collect all the terms in the

. S o This field®' h li i i i
effective low-energy Hamiltonian, which finally reads s field as scaling dimensioh and its components

can be written in terms of products of the components of the

ald _ fields in the fundamental representations of the &\d(2),
Heff:?f dx Wi(X)[(y1dx—ivy,a,) 6 sectors as
—1y,(a19 Db, V(0 +AHeg,  (44) O PP = R i, (50)
WhereAHeff includes quartic terms in fermionic fields that where ¢ and ¢’ are the primary fields in the fundamental
arise from Eqs(38), (41), and(42). (spin4) representation of the tw8U(2), isospin and spin

Clearly, the unperturbed theory possesse§4) symme-  sectors, respectively. These fields have scaling dimersion
try that is gauged by a diagonal(1) field (a,) and an  so the product has the right dimensignand, moreover,
isospinU(1) field (b,), which leads to the coset correlation functions of the fields on both sides coincide.

U(4) SU4), The other primary fielld in th§U(4)i CFT is the qne
U(1) g U (D), = U1 (45) transfqrmmg in the ant|symmetr|p ¢66) representatl_on,
diag 1s6 Iso which in the Young tableaux notation should rehg . It is
where SU(4), stands for the levek=1 Wess-Zumino- built up from the antisymmetric product of two fields in the

Witten (WZW) theory®14 fundamental representation
Before displaying the explicit expression for the perturba-
tions it is worth discussing in more detail the coset structure PO=A(PoPn). (51)

of the quadratic part of the Hamiltonian. This field has scaling dimension 1 and can be mapped into

IV. SU(2),XZ, EMBEDDING—THE PERTURBATIONS SU(2), fields as

IN'/ANEW LANGUAGE [(aya1).(az )] [(b151), (b B2)]

)
H
As it is known, the coset CFBU(4), can be alterna- -~ __ __ ——
tively described through the embedding = &%az}'{ 102} qara gBafa 1 eala2eb1b2¢gj“1“2}{51ﬁ2},
SU(4)1=SU(2),XSU(2),. (46) (52

The conformal central charges of the two theories coincidevhere ¢, ¢ are the primary fields in the symmetric
and primary fields in th&U(4), can be written in terms of (spin-1) representations of the tw®U(2), sectors that have
primaries in the twoSU(2), sectors. This will presently the correct scaling dimension 1. In E§2) we have used the
prove to be useful in the treatment of the perturbations. Thgymbols{,} and[,] to indicate, respectively, symmetrization
different SU(2), sectors in this embedding are naturally and antisymmetrization of indices.
identified in Eq.(44) as the spin and isospin sectors, by We are now ready to analyze the different perturbation
virtue of theo; ® 1 nondiagonal structure. Moreover, in this terms inAH.;;. First of all, contributions coming from in-
language the second Lagrange multipker gauges aJ(1) trachain couplings and constraints are known to be margin-
subgroup of the isospiBU(2), sector giving rise to ally irrelevant, just as in the case of decoupled chéins.
. o o . The interchain perturbation terms &H ¢ [those arisin
SU(2)5""™xSU(2)7°*PTU(1)05PN=SU(2)3" "X Z,. from the last tern? in Eq(38)] can be sgéagrated into t\?vo
(47) groups according to their scaling dimensions: there are terms
The last factor has been identified in Ref. 4 from e that correspond to relevant operatgssaling dimension )1
structure of a two-chain system. that can be identified with certain linear combinations of the
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components of the primarfsl) in the coset theory44), and . . aJ’
current-current terms, which have scaling dimension 2 and —yleo)y - ph(le o) pr] - ?f dx
are hence marginal.

More precisely, for the relevant part we can write X[ (o101 g pl(o1©1) g

+ iyl (1@ ) P - Yh(o10 ) Y] (56)

(53) The first two termgfirst line) renormalize the Fermi velocity
of the Majorana(isospin sector, while the third and fourth
wherex=J’ andA is given by (second ling corresponds to marginal forward-scattering
terms in the same sector. The fifth and seventh terms are

relevant perturbations—)\f dx[Tr(A(DH)+ H.cl],

-1 0 0 0 0 effectively zero due to the constraints on the two correspond-

. L ing U(1) currents and the sixth term correspond to the mar-

6 3 0 0 -3 0 ginal forward-scattering terms in the spin sector. The very

o o0 - I o o0 last one mixes spin and isospin sectors. This last contribution

A= z 2 (54 18 nevertheless marginal, so it does not change the low-

0 0 i -1 0 0 energy physics, which in the present case is dominated by

the relevant perturbations already discussed. Its effect could

o -3 0 0 3 O be important in the analysis of, e.g., zigzag ladders where the

0 0 0 0 0o -1 relevant perturbations are wiped out, as we show in the next
section, and only marginal interactions play a rote??

(see the appendix for detgilsUsing the identifications de- It can be easily shown that the marginal terms present on

scribed above and after some straightforward algebra we cfch separate chain, written in the present language, corre-

readily identify the perturbation tern{s3) in the embedding SPond to the sixth and eighth terms in the above expre;sion.
theory as Due to the fact that these terms correspond to marginally

irrelevant couplings and that they form a closed algebra, they
will have no effect on the low energy dynamics whatsoever.
relevant perturbatiors—\ f dxTr(¢+H.c) After having observed that, one can see that the effective
theory consists of two sectors that are decoupled from each
Y other.
+ Ef dxTr(¢pLo1dH o1+H.c).

(55) V. OTHER STRUCTURES: CROSSED

AND ZIGZAG LADDERS

To analyze the effect of these perturbation terms it is conve- | this section we will extend our previous analysis to

nient to reformulate the&sU(2), WZW sector in terms of more general situations, which are not only of academic in-
three decoupled Majorana fermions, and in this new lanterest, but are relevant in the analysis of real materials. These
guage it is easy to see that the first term gives a mass to glgre general situations arise when otidragona) cou-
three Majorana field$’ The second one is simply the energy plings between spins in neighboring chains are not negli-
operator of the remaining Majorana secttt’ As they are  giple. The two structures that we analyze now are the so-
all perturbations of dimension 1 we see that the gap opengalled crossed laddef&?°in which couplings along the two
linearly with the interchain coupling as predicted from the gjagonals are added, and zigzag ladders, in which only one
Weak-COUpling ||m|l34 Note the different Sign in the masses diagona| Coup"ng is adde]al_zz Another potentia| app”ca_

of the two sectors, also in agreement with the weak-couplingjon of the present formalism would be the study of the in-

analysis. terplay between interchain coupling and dimerization along
As for the current-current terms, they correspond to marthe |egs?®-28

ginal perturbations and can be written as

. . A. Crossed ladders
marginal perturbations

We consider a Heisenberg Hamiltonian given by

aJ’ . ; .
:_?f dx{— [ (os+io) @1y ¢l[(o3—i0) N2 N
H=3, S, 05080 ,+3' 3, &89
ald’ T ) n=11=1 n=1
®M'70L_R‘_’L}_?f dx{¢[(o3t+ioy) N
_ n (1), &@2) 4 &1) . &2)
1Y dll(75—i5)® i+ ReoL) e (S SRFSIS, 6D
alJ’ iti i -
_ ?f dx — ¢TI 1) g yh(101) \F/)\/I?negr: the last term corresponds to additional diagonal cou
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Iy = F

X

. Jiy J
FIG. 4. Phase diagram of the zigzag ladder. Bold bonds corre-

FIG. 3. Phase diagram of the crossed ladder. Bold bonds correspond again to nonzero links in the ME approximation.
spond again to nonzero links in the MF approximation.

_ different situation: while we still find a regime, which now
Following the same approach as for the normal ladder Weyists for J’<J, in which we reobtain the standard weak-
introduce Hubbard-Stratonovich fields associated to eaCEoupIing results, we find that the “strong-coupling” regime

coupling and perform a three-parameter MF analysis Proposy’>J) can still be described by an effective low-energy
ing constant values for the intrachain, the interch@mg,  fig|g theory.(See Fig. 4.
and the interchairidiagonal couplings. We find two differ- More precisely, in the regime in whicH <J we find that

ent regions in the parameter spadgJ(,J. /J'). It should 4y rejevant perturbations cancel in a way similar to that
be noted that this Hamiltonian is dual under the interchange, ,nd in the weak-coupling lim®-22 The effective low-

JeJ,; then it is enough to study the regiah<J. (See energy theory corresponds to the same coset theory, per-
F'g'_ 3) ) o . turbed only by the operators appearing in the first, third, and
(i) If J/3'> /8, the MF analysis yields the system in a foyrth lines in Eq.(56). The so-called parity breaking terms
weak-coupling regime, and following all the same steps asj;st studied in Ref. 21 appear in the present approach from

before, we arrive at the same effective-field theory with thepe next-to-leading order in the lattice spaciagn the ex-
noticeable change that the coefficient of the relevant perturpansion of the modified version of E(88).

bations is now shifted a¥' —2J . As in the weak-coupling In the other regime J'>J), the bands at the MF mini-
analysis;*** one immediately sees that there is a line inyum are given by ’

which the relevant perturbations vanish. On this line one

could expect a massless regime, as suggested by numerical J’

studies®®?° However in a recent treatment of the resulting k)=~
bosonized Hamiltonian it was shown that the current-current

terms are marginally relevant and a gap op@riBhe same ,

V2[1+cogka)],

ko

conclusion is attained in our resulting effective theory. e(*)(k)=—1/2[1+cos(ka)], (59)
Again, the new feature here is that we find the region of ™
validity of the weak-coupling effective-field theory to go up

. 5 there being no gap between them, and a field-theory descrip-

to ‘]..:8/77 J; > ) . tion is still possible. The difference is that the low-energy
(i) If J/3"<m"/8, the system falls in a strong-coupling effective theory should in this case be built up on only two

regime in which the two dispersion bands are separated by @&mion species, exhibitingU(2), symmetry. See Fig. 5.

gap (<J') and then a low-energy effective-field theory de- this should correspond to the description of a single chain

scription is not suitable here. plus next-nearest-neighbor interactions, which is the suitable
picture for the regime wheré’ dominates.
B. Zigzag ladders Once again, our method allows for the construction of an
The Hamiltonian is given by effective-field theory for the full range of couplings and in

particular allows us to study the transition from the massless
2 ) &0 N ) a2 4@ (c=1) J=0 limit to the massive Kosterlitz-Thouless regime
) ;1 NI 'Sn+1+~]'n§l S (ST SY ). known to arise atl~0.24)",?® which should, according to

(58) our analysis, extend to the limit — 0.
Since the main purpose of the present paper is to empha-

Introducing again Hubbard-Stratonovich fields associated tgize the potential applications of our approach, the analysis
each coupling and performing a MF analysis with constanof these effective-field theories will be addressed in a sepa-
values for the intrachain and interchain couplings, we find aate publication.

N
H=

n

144408-8
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expect a smooth crossover from a weak- to a strong-coupling
regime. Experimental observation of this crossover supposes
R ] the variation of the ratio of the exchange parameter. This
could in principle be achieved by applying pressure in the
perpendicular direction of the ladder axis.

Though our approach starts from a MF analysis, fluctua-
tions are taken into account for all orders. Besides, it allows
a classification of all the perturbations in the language of the
€, embedding of the theory int8U(2),XZ,. One interesting

I observation that arises is that only tde Majorana Fermi
velocity is renormalized to first order i’ by the interac-
tions.

The study of hole doped spin ladders is a natural exten-
sion of our approach. For this case th& model should be
considered and the charge sector of the theory could be rep-
resented by a spinless bositine slave boson representation
However the magnetic excitations will evolve from the trip-
VI. CONCLUSIONS let and the singlet found in this paper. The question of the

The approach developed in the present paper shows th ple pairing qlue to these _excitatio_ns c_ould therefore be ad-
the spectrum predicted from weak-coupling approximation ressed within our formalism. This will be reported else-
extends up to a finite value aF/J, our estimation of this where.
critical value beingl./J~8/7?. Beyond this value our MF
analysis in Sec. Il predicts a crossover to the strong-coupling
regime, where the rungs of the ladder become disconnected
among them. Fluctuations over this state will restore connec- We are grateful to E. F. Moreno for useful discussions
tivity and the strong-coupling approach of Refs. 30 and 3land computational help. We also thank A. Greco, A. Ho-
would be the appropriate starting point in this parameter renecker, A. A. Nersesyan, and P. Pujol for useful comments.
gime. As the classical potential analyzed in Sec. Il has aVe thank CONICET and FundacioAntorchas(Grants No.
double-well structure in the intermediate regidi{J;) we  A-13622/1-106 and A-13740/1-B4or partial support.

APPENDIX
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m
m

r
a

[YE]

FIG. 5. Energy bands for the zigzag ladder Ht>J MF
minimum.
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We write in this appendix the explicit form of some lengthy expressions appearing with compact notation in the main text.
The relevant part of the third term in E8), appearing in Eq(44), reads in the continuum limit

J'a
relevant perturbations — —- f dx(= W W w )+ WO e () - LW v ()

() t= ()t =g~ ()t -
R Uk ded (B b e AR S A i

Tt - Tt t t(= - - t T(= -
LR O e (R T e SRR SO STl b i B GO Sl de

t t(— - t t(— t t g (— t T -
L O ded (R SRk 2R SR IRR SOR ST i dw BR GUR SO s
FURIVRE VLV VRVR VTV U+ He), (A1)

by simple use of Eq925), (26), (29), and(30).
The explicit form of Eq.(51) in terms of fermions, using Eq48), is

pl100:2.021 . [(181).(G2.2)] _ A(q)(milal),(iﬁl)q)gz,az),(Tz,Ez)), A2)

H

where antisymmetrization affects barred and unbarred pairs of indices separately.
Using Eqgs.(Al) and(A2), expression(53) follows immediately. The base used for writing the matkiin Eg. (54) is the
one made explicit with indices in the left-hand side of E@2), ordered as[(+,7),(—=,T)LI(+.1),(+.,1)],

[(+!T)!(_!l)]![(_=T)=(+!l)]i[(_iT)i(_!l)]i[(—i_1~L)1(_1l)]'

144408-9



D. C. CABRA, A. DOBRY, AND G. L. ROSSINI PHYSICAL REVIEW B63 144408

1For a recent review on the status of experimental results on lad*®S.G. Naculich and H.J. Schnitzer, Nucl. Phys’sm 583(1990.

ders see E. Dagotto, Rep. Prog. PH§2. 1525(1999. 17A.B. Zamolodchikov and V.A. Fateev, Zh.kEp. Teor. Fiz.89,
2T. Barnes, E. Dagotto, J. Riera, and E.S. Swanson, Phys. Rev. B 380 (1985 [Sov. Phys. JETB2, 215(1985].
47, 3196(1993. 18D.C. Cabra and E.F. Moreno, Nucl. Phys4B5, 522 (1996.
3K. Totsuka and M. Suzuki, J. Phys.: Condens. Mafte6079 195 R. White and I. Affleck, Phys. Rev. B4, 9862(1996.
. (1995. . 20D, Allen and D. Seechal, Phys. Rev. B55, 299 (1997.
D.G. Shelton, A.A. Nersesyan, and A.M. Tsvelik, Phys. Rev. B21p a Nersesyan, A.O. Gogolin, and F.H.L. Essler, Phys. Rev.
5E5?63521(199@- _ Lett. 81, 910 (1998.
o rignac and R. Citro, Phys. Rev.@, 8622(2000. 22p.C. Cabra, A. Honecker, and P. Pujol, Eur. Phys. 1855
M.V. Abrashev, C. Thomsen, and M. Surtchev, Physic280, (2000.
297 (1997). 237 Weihong, V. Kotov, and J. Oitmaa, Phys. Rev5B 11439

7J. Marston and I. Affleck, Phys. Rev. 89, 11 538(1989.

8 . . (1998.
C. Itoi and H. Mukaida, J. Phys. &7, 4695(1994. 24
9¢C. Mudry and E. Fradkin, Phys. Rev. &, 11 409(1994. Dé8A7"le(g’o (F)(')H"" Essler, and A-A. Nersesyan, Phys. Rev6B

10p 3. Freitas and R.R.P. Singh, Phys. Re\625525(2000).
11|, Affleck, in Fields, Strings and Critical Phenomena, Les
Houches, Session XL|Xdited by E. Brezin and J. Zinn-Justin

25X. Wang, cond-mat/980329@npublishesl
28M.A. Martin-Delgado, R. Shankar, and G. Sierra, Phys. Rev. Lett.

(North-Holland, Amsterdam, 1988 ”7 77, 3443(1996.
12y Hosotani, J. Phys. /80, L757 (1997); 31, 7415E) (1998. D.C. Cabra and M.D. Grynberg, Phys. Rev. L8&, 1768(1999.
13 Witten, Commun. Math. Phy§4, 455 (1984. 28y -J. Wang and A.A. Nersesyan, Nucl. Phys583 671 (2000.
1V.G. Knizknik and A.B. Zamolodchikov, Nucl. Phys. B47, 83 29S. Eggert, Phys. Rev. B4, R9612(1996.

(1984). %03, sachdev and R.N. Bhatt, Phys. Rev4B 9323(1990.
155ee, e.g., P. Bouwknegt and K. Schoutens, Phys. R2$.183  *'S. Gopalan, T.M. Rice, and M. Sigrist, Phys. Rev48 8901

(1993. (1996.

144408-10



