542 research outputs found

    Geodesic Warps by Conformal Mappings

    Full text link
    In recent years there has been considerable interest in methods for diffeomorphic warping of images, with applications e.g.\ in medical imaging and evolutionary biology. The original work generally cited is that of the evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to deform images of one species into another. However, unlike the deformations in modern methods, which are drawn from the full set of diffeomorphism, he deliberately chose lower-dimensional sets of transformations, such as planar conformal mappings. In this paper we study warps of such conformal mappings. The approach is to equip the infinite dimensional manifold of conformal embeddings with a Riemannian metric, and then use the corresponding geodesic equation in order to obtain diffeomorphic warps. After deriving the geodesic equation, a numerical discretisation method is developed. Several examples of geodesic warps are then given. We also show that the equation admits totally geodesic solutions corresponding to scaling and translation, but not to affine transformations

    A Noninvasive Optical Probe for Detecting Electrical Signals in Silicon IC’s

    Get PDF
    We report using a 1.3µm(silicon-sub-bandgap) optical probing system to detect electrical signals in silicon integrated circuits. Free carriers within integrated active devices perturb the index of refraction of the material, and we have used a Nomarski interferometer to sense this perturbation. Typical charge-density modulation in active devices produces a substantial index perturbation, and because of this, we have used an InGaAsP semiconductor laser to experimentally observe real-time 0.8V digital signals applied to a bipolar transistor. These signals were detected with a signal-to-noise ratio of 20dB in a system detection bandwidth of over 200MHz. Since the free-carrier-induced refractive-index perturbation is present in all semiconductor materials, in the future, we expect to be able to detect signals in integrated circuits fabricated in GaAs or any other material, and by taking advantage of the high spatial and temporal resolution of this system, we should be able to observe free-carrier dynamics within most active devices

    Random‑telegraph‑noise‑enabled true random number generator for hardware security

    Get PDF
    The future security of Internet of Things is a key concern in the cyber-security field. One of the key issues is the ability to generate random numbers with strict power and area constrains. “True Random Number Generators” have been presented as a potential solution to this problem but improvements in output bit rate, power consumption, and design complexity must be made. In this work we present a novel and experimentally verified “True Random Number Generator” that uses exclusively conventional CMOS technology as well as offering key improvements over previous designs in complexity, output bitrate, and power consumption. It uses the inherent randomness of telegraph noise in the channel current of a single CMOS transistor as an entropy source. For the first time multilevel and abnormal telegraph noise can be utilised, which greatly reduces device selectivity and offers much greater bitrates. The design is verified using a breadboard and FPGA proof of concept circuit and passes all 15 of the NIST randomness tests without any need for post-processing of the generated bitstream. The design also shows resilience against machine learning attacks performed by the LSTM neural network

    Immune Antibodies and Helminth Products Drive CXCR2-Dependent Macrophage-Myofibroblast Crosstalk to Promote Intestinal Repair.

    Get PDF
    Helminth parasites can cause considerable damage when migrating through host tissues, thus making rapid tissue repair imperative to prevent bleeding and bacterial dissemination particularly during enteric infection. However, how protective type 2 responses targeted against these tissue-disruptive multicellular parasites might contribute to homeostatic wound healing in the intestine has remained unclear. Here, we observed that mice lacking antibodies (Aid-/-) or activating Fc receptors (Fcrg-/-) displayed impaired intestinal repair following infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb), whilst transfer of immune serum could partially restore chemokine production and rescue wound healing in Aid-/- mice. Impaired healing was associated with a reduced expression of CXCR2 ligands (CXCL2/3) by macrophages (MΦ) and myofibroblasts (MF) within intestinal lesions. Whilst antibodies and helminths together triggered CXCL2 production by MΦ in vitro via surface FcR engagement, chemokine secretion by intestinal MF was elicited by helminths directly via Fcrg-chain/dectin2 signaling. Blockade of CXCR2 during Hpb challenge infection reproduced the delayed wound repair observed in helminth infected Aid-/- and Fcrg-/- mice. Finally, conditioned media from human MΦ stimulated with infective larvae of the helminth Ascaris suum together with immune serum, promoted CXCR2-dependent scratch wound closure by human MF in vitro. Collectively our findings suggest that helminths and antibodies instruct a chemokine driven MΦ-MF crosstalk to promote intestinal repair, a capacity that may be harnessed in clinical settings of impaired wound healing

    Developments in the field of clinical allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part II

    Full text link
    In this article, we describe developments in the field of clinical allergy as described by Clinical and Experimental Allergy in 2018; epidemiology, asthma and rhinitis, clinical allergy and allergens are all covered.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153257/1/cea13535.pd

    CD4+ and CD8+ T cells exhibit differential requirements for CCR7-mediated antigen transport during influenza infection

    Get PDF
    Upon encounter of viral Ags in an inflammatory environment, dendritic cells up-regulate costimulatory molecules and the chemokine receptor CCR7, with the latter being pivotal for their migration to the lymph node. By utilizing mice deficient in CCR7, we have examined the requirement of dendritic cell-mediated Ag transport from the lung to the draining lymph node for the induction of anti-influenza immune responses in vivo. We found that CCR7-mediated migration of dendritic cells was more crucial for CD8(+) T cell than CD4(+) T cell responses. While no specific CD8(+) T cell response could be detected in the airways or lymphoid tissues during the primary infection, prolonged infection in CCR7-deficient mice did result in a sustained inflammatory chemokine profile, which led to nonspecific CD8(+) T cell recruitment to the airways. The recruitment of influenza-specific CD4(+) T cells to the airways was also below levels of detection in the absence of CCR7 signaling, although a small influenza-specific CD4(+) T cell population was detectable in the draining lymph node, which was sufficient for the generation of class-switched anti-influenza Abs and a normal CD4(+) T cell memory population. Overall, our data show that CCR7-mediated active Ag transport is differentially required for CD4(+) and CD8(+) T cell expansion during influenza infection

    The over-reset phenomenon in Ta2O5 RRAM device investigated by the RTN-based defect probing technique

    Get PDF
    IEEE Despite the tremendous efforts in the past decade devoted to the development of filamentary resistive-switching devices (RRAM), there is still a lack of in-depth understanding of its over-reset phenomenon. At higher reset stop voltages that exceed a certain threshold, the resistance at high resistance state reduces, leading to an irrecoverable window reduction. The over-reset phenomenon limits the maximum resistance window that can be achieved by using a higher Vreset, which also degrades its potential in applications such as multi-level memory and neuromorphic synapses. In this work, the over-reset is investigated by cyclic reset operations with incremental stop voltages, and is explained by defect generation in the filament constriction region of Ta2O5 RRAM devices. This is supported by the statistical spatial defects profile obtained from the random telegraph noise based defect probing technique. The impact of forming compliance current on the over-reset is also evaluated
    corecore