In recent years there has been considerable interest in methods for
diffeomorphic warping of images, with applications e.g.\ in medical imaging and
evolutionary biology. The original work generally cited is that of the
evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to
deform images of one species into another. However, unlike the deformations in
modern methods, which are drawn from the full set of diffeomorphism, he
deliberately chose lower-dimensional sets of transformations, such as planar
conformal mappings.
In this paper we study warps of such conformal mappings. The approach is to
equip the infinite dimensional manifold of conformal embeddings with a
Riemannian metric, and then use the corresponding geodesic equation in order to
obtain diffeomorphic warps. After deriving the geodesic equation, a numerical
discretisation method is developed. Several examples of geodesic warps are then
given. We also show that the equation admits totally geodesic solutions
corresponding to scaling and translation, but not to affine transformations