45,327 research outputs found
A Herschel resolved far-infrared dust ring around HD 207129
Context. Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of information regarding the dust location.
Aims. The Herschel DUNES key program is observing 133 nearby, Sun-like stars (<20 pc, FGK spectral type) in a volume limited survey to constrain the absolute incidence of cold dust around these stars by detection of far infrared excess emission at flux levels comparable to the Edgeworth-Kuiper belt (EKB).
Methods. We have observed the Sun-like star HD 207129 with Herschel PACS and SPIRE. In all three PACS bands we resolve a ring-like structure consistent with scattered light observations. Using α Boötis as a reference point spread function (PSF), we deconvolved the images, clearly resolving the inner gap in the disc at both 70 and 100 ÎŒm.
Results. We have resolved the dust-producing planetesimal belt of a debris disc at 100 ÎŒm for the first time. We measure the radial profile and fractional luminosity of the disc, and compare the values to those of discs around stars of similar age and/or spectral type, placing this disc in context of other resolved discs observed by Herschel/DUNES
Evaluation of a spacecraft nitrogen generator
A method is discussed of generating nitrogen for cabin leakage makeup aboard space vehicles having longer duration missions. The nitrogen generation concept is based on using liquid hydrazine as the stored form of nitrogen to reduce the higher tankage and expendables weight associated with high pressure gaseous or cryogenic liquid nitrogen storage. The hydrazine is catalytically dissociated to yield a mixture of nitrogen and hydrogen. The nitrogen/hydrogen mixture is then separated to yield the makeup nitrogen. The excess supply of hydrogen would be available for use in the reduction of metabolic carbon dioxide. A detailed comparison was completed of Palladium/Silver and Polymer Electrochemical-based Nitrogen Generation Systems. The palladium/silver-based system was judged better than the Polymer Electrochemical Nitrogen Generation System because of lower expendable weight and palladium/silver nitrogen/hydrogen separation represents 'off-the-shelf' technology
Resource Letter: Gravitational Lensing
This Resource Letter provides a guide to a selection of the literature on
gravitational lensing and its applications. Journal articles, books, popular
articles, and websites are cited for the following topics: foundations of
gravitational lensing, foundations of cosmology, history of gravitational
lensing, strong lensing, weak lensing, and microlensing.Comment: Resource Letter, 2012, in press
(http://ajp.dickinson.edu/Readers/resLetters.html); 21 pages, no figures;
diigo version available at
http://groups.diigo.com/group/gravitational-lensin
Evaluation of the electrochemical O2 concentrator as an O2 compressor
A program was successfully completed to analytically and experimentally evaluate the feasibility of using an electrochemical oxygen (O2) concentrator as an O2 compressor. The electrochemical O2 compressor (EOC) compresses 345 kN/sq m (50 psia) O2 generated on board the space vehicle by the water electrolysis subsystem (WES) in a single stage to 20,700 kN/sq m (3000 psia) to refill spent extravehicular equipment O2 bottles and to eliminate the need for high pressure O2 storage. The single cell EOC designed, fabricated, and used for the feasibility testing is capable of being tested at O2 pressures up to 41,400 kN/sq m (6000 psia). A ground support test facility to test the EOC cell was designed, fabricated, and used for the EOC feasibility testing. A product assurance program was established, implemented, and maintained which emphasized safety and materials compatibility associated with high pressure O2 operation. A membrane development program was conducted to develop a membrane for EOC application. Data obtained using a commercially available membrane were used to guide the development of the membranes fabricated specifically for an EOC. A total of 15 membranes were fabricated
Exploring modality switching effects in negated sentences: further evidence for grounded representations
Theories of embodied cognition (e.g., Perceptual Symbol Systems Theory; Barsalou, 1999, 2009) suggest that modality specific simulations underlie the representation of concepts. Supporting evidence comes from modality switch costs: participants are slower to verify a property in one modality (e.g., auditory, BLENDER-loud) after verifying a property in a different modality (e.g., gustatory, CRANBERRIES-tart) compared to the same modality (e.g., LEAVES-rustling, Pecher et al., 2003). Similarly, modality switching costs lead to a modulation of the N400 effect in event-related potentials (ERPs; Collins et al., 2011; Hald et al., 2011). This effect of modality switching has also been shown to interact with the veracity of the sentence (Hald et al., 2011). The current ERP study further explores the role of modality match/mismatch on the processing of veracity as well as negation (sentences containing ânotâ). Our results indicate a modulation in the ERP based on modality and veracity, plus an interaction. The evidence supports the idea that modality specific simulations occur during language processing, and furthermore suggest that these simulations alter the processing of negation
Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 1: Theory and application
A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined
Evaluation of a spacecraft nitrogen generator
An experiment was completed to demonstrate that low ammonia concentrations in the product nitrogen stream are possible using the staging concept. Mixtures of nitrogen, hydrogen and ammonia were fed into a temperature controlled packed bed ammonia dissociator. An ammonia concentration of 1.03% in the feed stream was reduced to less than 50 ppm at temperatures greater than or equal to 777K. The actual inlet ammonia concentration to the final nitrogen generation module ammonia dissociation stage was only 0.09%
Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 2: Computer program description
A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described
Exobiology on Mars
Descriptions of several instrument concepts that were generated during a workshop entitled, Exobiology Instrument Concepts for a Soviet Mars 94/94 Mission, held at NASA Ames Research Center in 1989 are presented. The objective was to define and describe instrument concepts for exobiology and related science that would be compatible with the mission types under discussion for the 1994 and 1996 Soviet Mars missions. Experiments that use existing technology were emphasized. The concepts discussed could also be used on U.S. missions that follow Mars Observer
- âŠ