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S W Y  

A method has been developed t o  determine the  flow f i e l d  of a 

body of revolut ion i n  steady separated flow (e.g.  at  high angle of 

a t t a c k ) ,  including the predict ion of the normal force  and pi tching 

moment. 

The method m a k e s  use of a computer t o  in t eg ra t e  the various 

solut ions and so lu t ion  propert ies  of t he  sub-flow f ie lds  which make 

up t h e  e n t i r e  flow f i e l d .  Thus, a f i n i t e  difference solut ion t o  t h e  

complete Navier-Stokes equations is not employed. 

The method u t i l i z e s  two ideas i n  t h i s  approach t o  a steady three- 

the unsteady cross  flow analogy which dimensional separated flow: 

reduces the  given three-dimensional steady separated flow t o  a two- 

dimensional unsteady separated flow and a new so lu t ion  technique f o r  

the la t te r  problem, Th i s  technique employs a wake descr ipt ion of 

d i s c r e t e  point  vo r t i ce s  a r i s i n g  from the separat ion of shear layers  at  

t h e  surface. 

an unsteady wake. Thus the  mathematical model follows d i r e c t l y  from 

t h e  physics of the w a k e  evolution w i t h  t i m e .  

The ove ra l l  technique is applied, employing a computer, t o  two 

an ogive-cylinder and an e l l i p s o i d  of revolution a t  low 

Force and moment data are obtained and are found t o  agree w e l l  

The point  vor t ices  convect &.a diffuse downstream t o  form 

tes t  cases: 

speeds. 

w i t h  experimental data, pa r t i cu la r ly  a t  high angles of a t tack  where 

inv i sc id  theory is  inval id .  

found which agree w i t h  avai lable  experimental f indings.  

Separation regions and w a k e  pa t te rns  are 



1.0 Introduction 

The objective of the present work is to develop a numerical 

computation method to determine the flow field of a body of revolution 

in steady separated flow (e.g., a body at high angle of attack), 

including the prediction of forces and moments. 

There are many computational techniques of varying accuracy for 

the flow about a body with no separation such that the assumptions of 

inviscid flow and linearized equations of motion can be utilized 

(references 1 & 2,  for example). 

are based upon the availability of fundamental solutions of the 

equations of motion in integral form but with unknown singularity 

distributions. The computer is then used to determine specific 

solutions for the particular bodies which meet imposed boundary 

conditions and to evaluate the resulting numerical solution to yield 

pressure distributions, forces and moments. For flow fields in 

which separation must be taken into account, the assumptions of 

inviscid flow and linearized theory are invalid and the usual approach 

is to solve the Navier-Stokes equations in finite-difference form by 

means of a computer (references 3 ,  4, 5 ) .  At present, the solutions 

for inviscid, linear flow are more developed and hence, more reliable, 

and require far less computation than the full finite difference 

solutions. 

For such flow fields the techniques 

It is intended here to adopt the former approach; i.e., 

computer implementation of known solutions and solution properties. 

This approach is believed to promote an increased physical understanding 



of the problem, to reduce the role of the computer as a black box, 

and to minimize the computational time and storage. 

The obstacle in pursuing such a course is, obviously, the 

relatively very few solutions and solution properties for viscous 

flows compared to the situation for inviscid flows. 

this obstacle, two techniques are employed. 

To overcome 

The first is the unsteady cross flow analogy (or viscous cross 

flow analogy or impulse flow analogy), which is based upon the 

assumption of an equivalence between three dimensional steady flow 

and two dimensional unsteady flow. 

below, this assumption is a heuristic one based primarily upon 

experimental data. With this technique, the three dimensional 

steady separated flow problem is reduced to a two dimensional unsteady 

separated flow problem. 

As explained in more detail 

The second technique, applicable to the latter problem, is 

based upon the assumption that the two dimensional unsteady wake can 

be described by a distribution of inviscid point vortices superimposed 

on the unseparated potential flow solution, suitably modified by 

diffusive effects. The argument for this is based upon the time 

evolution of the wake. 

Part I of the report treats the basic theory, applications and 

results while Part I1 describes the computer program. 

In the following sections of this part, Part I, the basic theory 

consists of the description of the unsteady cross flow analogy and the 

solution technique for the flow in the cross plane, a two dimensional 

3 



unsteady flow field. 

ogive-cylinder and an ellipsoid of revolution and results for normal 

force, pitching moment, vortex-wake patterns and separation regions 

are compared with experimental data. 

The theory is applied to two geometries, an 
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2.0 Unsteady Cross Flow 

2.1 General Concepts 

The problem is to determine the flow field and to predict the 

forces and moments on a three-dimensional body of angle of attack a 

in a steady uniform flow (Figure 1) at high Reynolds number. 

angle of attack a is of arbitrary magnitude such that the flow may 

be separated. 

The 

Thus linearized theory is not sufficient. 
I 

I 

,For aerodynamic bodies at small angles of attack, the three 

dimensional boundary layer adheres to the entire body except in the 

neighborhood of a small base. 

may be ignored allowing for an inviscid flow approximation and, for 

slender bodies, application of linearized theory. For higher angles 

of attack (references 6-10) the boundary layer separates and may 

separate to such an extent that flow separation exists over a substantial 

portion of the body surface. In this situation, inviscid theory is 

no longer applicable (even though the body is slender) and there is 

no viscous theory to describe this complicated three dimensional flow 

field. 

For this situation the boundary layer 

This problem is approached herein by using the unsteady cross 

flow analogy applied to a body of revolution (references 11-23). 

essence of this technique is found in applying the (dimensional) 

transformation [;*, ?*, ;*, e*]  - [x*, y*, z* + Wt*, t*] and considering 

the flow field in the plane z* - 0 (see Figure 1). 

the flow field is that induced by a circular cylinder of time-varying 

radius (correlated with the thickness distribution of the body) in a 

The 

In this plane, 

8 
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uniform, viscous, incompressible free stream of velocity U - V sin u.  

Infermztim z ~ a i l a b l e  from the relatively simpler two-dimensional 

unsteady flow is thus applicable to the three-dimensional steady flow 

field. In particular, the two-dimensional unsteady drag distribution 

with time is applicable. This can be transformed to the longitudinal 

normal force distribution of the three dimensional steady flow field 

yielding the normal force and pitching moment on the given body at 

angle of attack. 

The correlation of the two dimensional unsteady results and the 

three dimensional steady results lacks a theoretical foundation 

(references 13, p. 415 and 24, p. 464). Basically, there exists no 

general transformation between the two dimensional unsteady and the 

three dimensional steady Navier-Stokes equations. 

cular transformations such as in slender body theory and its extension 

to hypersonic flow, the equivalence principle, and it is of note that 

these are inviscid theories (shocks entering by jump conditions). So, 

to this date, the prime argument for the validity of the unsteady cross 

flow analogy lies in the similarity of the flow fields obtained, 

usually by vortex visualization techniques, and the valid results 

achieved, although the latter can be argued against on the grounds of 

emp ir i c i sm . 

There exist parti- 

The question of the existence of a transformation between three 

dimensional steady and two dimensional unsteady Navier-Stokes equations 

can be considered in terms of a basic property of the unsteady cross 

flow analogy, namely, the absence of upstream effects; the force 

9 



distribution on the three dimensional body over the length (0, ;*I 

is independent of the force distribution over the length (;*, a ) .  

For this to be true the steady Navier-Stokes equations would have 

to be parabolic or hyperbolic with ;* as a time-like coordinate. 

If the three dimensional steady flow field is decomposed into 

the outer inviscid flow, the boundary layer, and the wake, the 

governing equation would be the Euler equations, the boundary layer 

equations, and the complete Navier-Stokes equations, respectively. 

For incompressible flow (reference 25) ,  the outer flow is governed 

by elliptic equations, the boundary layer by parabolic equations with 

time-like, and the wake by elliptic equations. Thus only the boundary 

layer region is compatible with the unsteady cross flow property. 

For supersonic flow the theory is not as well developed. The 

outer flow is governed by elliptic equations (which mathematically 

may be ignored for a sharp pointed body) and hyperbolic equations. 

boundary layer is still paraboljc but the complete Navier-Stokes 

equations in the wake still have an elliptic property. 

The 

Thus, aside from shocks, the requirements for the validity of 

the unsteady cross flow analogy are partially met in supersonic flow 

in that the outer flow is for the most part hyperbolic but in the 

dominant region, the wake, the requirements are not satisfied. 

While the boundary layer of the three dimensional steady flow 

field is parabolic, there is the conflict between three dimensional 

and two dimensional boundary layer states (reference 13, p. 415). For 

usual three dimensional flow fields, the three dimensional boundary 

10 
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, layer is for the most part turbulent. Yet the pertinent Reynolds' 

number for two-dimensional unsteady flow, a function of the Reynolds' I 

number of the three dimensional steady flow, could be such that a 

~ two dimensional laminar boundary layer theoretically exists. This 
1 

mathematical resdt has no physical interpretation. For the particular 

three dimensional steady flow fields considered herein and for the 

particular equivalence between three dimensional steady and two-dimensional 

I , 
I 
I 

unsteady flow fields used herein, the pertinent Reynolds' number 

determined for the latter flow field are such that laminar boundary 

layers theoretically exist. 

unsteady boundary layers are employed based upon this formal justification. 

' 
Thus the use of laminar two dimensional 

I 

In addition there is the discrepancy between the concept of 
I 

two dimensional and three dimensional separation of boundary layers, 

further complicated 

layer. 
1 by the unsteadiness of the two dimensional boundary 

There exists a body of work employing the application of the 

I unsteady cross flow analogy to a delta wing of low aspect ratio. 

problem has the advantage in that the sub-problem of the two dimensional 

unsteady flow (about a flat plate or thin ellipse as opposed to a 

circular cylinder) is simpler since the location of the separation 

point is known a priori (i.e. the flow separates almost immediately 

at the edge). 

assuming a conical flow in the three dimensional steady case which 

bears resemblance to the two dimensional unsteady case (reference 26). 

This area has received a great deal of attention (references 27-30) 

but the present work cannot make use of these simplifications. 

This 

, 
In addition, the delta wing can be approached by 

I 

11 
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The work of Hill for bodies of revolution (reference 31), while 

not employing the explicit cross flow analogy, bears upon the problem 

of separated flow. 

approach is a limited one. 

The theory is completely inviscid and so the 

In this context then it is not surprising that the correlation 

between the two flow fields has been achieved in various ways, often 

requiring ad hoc experimental data. 

work (see Section 2.2) is the direct one of equating two dimensional 

unstzady drag (pressure and viscous, although the latter is usually 

negligible) to the normal force distribution. 

The correlation used in this 

The sub-problem of two-dimensional unsteady flow while simpler to 

treat than the original three dimensional steady one, is still a 

difficult problem since a boundary layer forms, separates, and a wake 

is formed about a cylinder of varying radius. 

more fully in Section 3.0, is treated with a new approach compatible 

with the originally defined approach of using the computer with known 

solutions. With the possible exception of reference 17, (which uses 

a finite difference approximation to the Navier-Stokes equation) this 

approach yields the most complete model (for high Reynolds' number) in 

that viscosity enters directly and empiricism is minimized. 

This sub-problem,discussed 

2.2 Transformations 

In the absence of a transformation between the three dimensional 

steady and two dimensional unsteady Navier-Stokes equations, the 

unsteady cross flow analogy is applied by utilizing simple transfor- 

mations of the geometries and the forces. 



The geometry transformations obtained as follows: given the 

I ' three dimensional steady flow field of Figure 1. 

W = V cos a is superimposed on the steady three dimensional flow 

If a velocity 

i field of Figure 1, the flow field of Figure 2a results. 

attention is confined 

an unsteady two dimensional flow field with a constant velocity at 

Then if 

to the plane ;* = 0, the situation is that of 

~ 

i 
infinity and body radius changing with time, Figure 2b. 

The geometry transformations are then, with ( )* as a dimensional 

~ quantity, 

I 0 s * 5 R, 0 5 t* I - t* = - 
I w '  

n 

(1) 
R 
W 

z* a*(t*) = ro*(i*), 

' for arbitrary ro*(i*). 

Now r * is normalized by d/2. In the unsteady two dimensional 
0 

problem, a*(t*) must be normalizedby a length characteristic of the 

problem. Let this characteristic length be a to be defined for each 
particular body but on the order of (W/R) a*(t*)dt* = (l/!i) 

I r R  ' 0  
I l 1, ro*(i*)di*.  

I 
I 
I Letting t = Ut*/i, the above equations in nondimensional form 

i are 

I d df A df tan a 
I a a a(t) = ro<Z), t - (..-tan a )  i; o L z L 1, o I t 5 - 

(2) I 

The force transformation is obtained as follows: given the 

The normal, force, 1 

~ N, and the pitching moment, M, are to be determined utilizing the 

~ unsteady cross flow analogy. 
I 

three dimensional steady flow field of Figure 1. 
I 

13 



Consider the three dimensional steady flow field. Let N(;*) 

be the force normal to axis of symmetry on the section of the body 

from the nose to z"* such that N(R) N. Then 

The moment about the nose is then, positive nose up, 

and the moment about an arbitrary point [;,?,SI = [O,O,XR], 0 I X 2 1, 

is 

MA = M + ARN 

To reduce these to coefficient form let 

AI 

- 
'N - 

= 
cM, X 

dN 2-  dz* 
bV2d 

c , ( i )  = - 

2N - 
;v2s 

2MA 
;v2sa 

where d is the maximum diamet-r, R is 

frontal area. 

he leng 

(5) 

2 h and S = ad /4 t 

Normalizing ;* by R, equations ( 3 ) ,  (4) and ( 5 )  become 

1 
c c d: 
N I T  n 

0 

1 ( 6 )  1 

(7) 

( 9 )  

14 



I 

~ 

The above coefficients are found by solving the two dimensional 

1 unsteady problem. Within this problem, the pertinent force is the 
I ' drag as a function of time. (It is assumed that the times are not 
I 
I long enough for any oscillating lift to develop). 

i , The drag is given by 

D(t*) = p*cos e a*(t*)d8 + r*sin e a*(t*)de (11) 1:" 
With a coefficient of pressure 

2(P* - P",) 
2 c =  

O u  P 

' the coefficient of drag 

- 2D - 
cD pu2(2a) 

is obtained as 

C COS e a(t)de + - r sin e a(t)de 3: 
0 P 0 

I ' Then the basic assumption in the force transformation is 

h 
I 

dN 
de* -r (;*) = D(t*), z^* = Wt*; = V ,  6 = P ,  P, P, 

or in non-dimensional form 

2IL 2 at  
df tan a cn(i) = sin a CD(t); i = 

with RezDUS = Re3DS (g/fd) sina and the same free stream static values. 



This assumption ignores longitudinal shear effects. But for 

aerodynamics shapes the fineness ratio f = R/d is usually large,thus 

r8ducing the contribution of longitudinal effects. 

To further check the assumptions, comparisons were made between 

the experimental pressure distributions of the three dimensional 

steady flow and the theoretically derived two dimensional unsteady 

mea. 

to pressure only on the segment of the body from the nose to c* in the 
three dimensional steady flow. Then 

To make this comparison let N (;*) be the normal force due 
P 

p*cos 6 r *(;*) de 
0 

In tenns of the coefficient of pressure 

a d  the sectional coefficient 

dN 

In two dimensional unsteady flow, let the portion of D(t) due 

to pressure be 

Dp(t) = J p*cos e a*(t*) 
0 

In tenns of the coefficient of pressure as in 

dB (21) 

equation (12) and the 



I coefficient of pressure drag 
I 
I 

2D(t*) a 

pu2 (2;) 

= i 1 c cos e a(t) de 
P cD,P 0 

I From equation (2) and the pressure contribution to equation (16), 

I However, as is seen in the following section, this comparison 

1 can only be made qualitatively. 

I 3.0 Two Dimensional Unsteady Separated Flow 

~ 3.1 General Concepts 

I 
1 

The problem is to find the flow field induced by a circular 

I 

~ 

cylinder of time-varying radius in a uniform stream of a viscous 

incompressible fluid (Figure 2b). 

predict the forces and moments of a body in a three dimensional 

steady flow field. 

The results are to be applied to 
I 
I 

The flow field is that of a uniform flow with no body present 

I for t At t = 0 a circular body appears at the origin with a 

radius a(t) such that a(0) = 0. 

layer (assumed to be laminar) is formed on the circular cylinder. 

At later times the boundary layer separates from the cylinder, 

creating vorticity in the flow field immediately after the cylinder. 

Thus a wake is formed. 

0. 

~ 

During the initial stages a boundary 

17 



In previous work employing the unsteady cross flow with a body 

of revolution (references 11-23), the two dimensional unsteady 

solution was derived from a direct use of experimental data or the 

use of inviscid solutions with ad hoc experimental data to describe 

the viscous effects. Of note is the work of reference 17 which used 

the finite difference approach for the two dimensional unsteady 

problem . 
The approach in the present work is unique in that the viscous 

element, the primary mechanism being the separation of an unsteady 

boundary layer, is included without resorting to a finite difference 

approximation to the complete Navier-Stokes equations nor to ad hoc 

experimental data. This approach can be described as follows: 

The problem at early times is sometimes referred to as the cone 

problem for which no solution exists. 

small time analytical solution (since numerical integration follows, 

an analytical solution is required for initial conditions) for a 

circular cylinder of constant radius impulsively started from rest in 

a viscous incompressible fluid (reference 32). Since the latter can 

be achieved experimentally by plunging a circular rod into a flowing 

stream, this approximation is valid for a blunt nosed three dimensional 

body. 

It will be approximated by the 

At later times, the solution is obtained by using the technique 

employed in other work in obtaining the solution for large times for 

a circular cylinder of constant radius impulsively started from rest 

(this work will be ref erred to as "the constant-radius-solution") , 

and modifying it for a time-varying radius. 



The problem for a constant radius cylinder which has received a 

great amount of attention, is considered a classical problem in 

separated flow (reference 33). 

a solution to the Navier-Stokes equation in finite difference form 

There have been two primary approaches: 

I 
I I (reference 34) and a purely inviscid solution (references 14,15). The 

, latter while simpler still requires a computer and must employ 

I empiricism for the separation phenomenon, a viscous action. 

The approach adopted in the constant-radius-solution was to 

use the computer with known solutions (and matching different solutions 

based upon the physics of the flow field) while retaining viscous , 

phenomena. This approach has succeeded except for the case of the 
I two dimensional unsteady boundary layer where a finite-difference 

solution was required. 
1 

(An approach midway between a finite difference approximation 

to the Navier-Stokes equation and the model used here is the work of 

I 
1 difference is that Wu solved the Navier-Stokes equations in the wake 

Wu (reference 5) (which did not use unsteady cross flow concepts). The 
I 

alone while here a set of point vortices was used. 

better theoretically, has not been successful at the values of Reynold's 

Wu's model, while 
I 

1 numbers used here). 

I The particulars of the approach of the constant-radius-solution 

are as follows (see Figure 4): For the time period during which the 

cylinder moves about a third of its radius the boundary layer is 

fully attached with classical potential flow outside. Starting at 

some time before separation, the flow field is given as the 



unseparated time dependent boundary layer solution (reference 32) , 
evaluated at this time, as driven by the classical potential flow 

about the cylinder. The solutions for the laminar boundary layer 

for later times are then obtained by numerical integration of the 

boundary layer equations employing Hall's scheme (reference 35). 

With succeeding times, the boundary layer separates starting at the 

rear stagnation point and the point of separation moves upstream. 

At the point of separation, the vorticity flux across the boundary 

layer is found and during a time At, corresponding to the time of 

integration of the boundary layer, this flux is summed up and 

represented by a point vortex. 

downstream and its effect is modified by diffusion. 

is formed of these point vortices superimposed on the original 

potential flow. The wake grows, being continually fed with vorticity 

by the separating boundary layer, while outside of the wake and the 

boundary layer, irrotational flow exists. This situation continues 

until the steady state region is attained. 

steady state is never achieved due to instabilities in the wake and 

mathematically this may only be attained in infinite time. 

of the constant-radius-solution reveals the neighborhood of the steady 

state is achieved in a finite time (Figure 5) but for its present 

use, 0 < t < (df/a) tan a ,  the steady state region does not enter. 

This point vortex is convected 

Thus, the wake 

Physically a rigorous 

The work 

It is to be noted that the no-slip condition is satisfied on 

the portion of the cylinder covered by the boundary layer but not on 

the remaining portion. The wake model as depicted above while 



reducing the surface speed of potential flow is not sufficient to 

yield a surface speed sufficiently less than free stream speed to 

approximate to a no-slfp condition. Thus there is postulated a shear 

layer on the rear of the cylinder, similar to a boundary layer but 

-.a wrtll t. a retstinnal outer flow, to satisfy no-slip. This rear shear 

layer may separate, creating vorticity in the wake of the sign 

opposite to that shed by the boundary layer separation. 

For the present problem, the above physical situation is modified 

by the presence of a time varying radius a(t). 

With this approach the flow field is decomposed into a set of 

sub-flow-fields and their interactions. 

their solution are given in the following. 

The governing equations and 

3 . 2  Outer Flow 

The flow outside the boundary layer rear shear layer (see Figure 4) 

is assumed to be the classical potential flow (uniform flow and source 

and doublet at origin) over a cylinder plus the potential flow induced 

by a set of point vortices. 

In terms of the non-dimensional quantities [x,y,t] = [x*/a,y*/a,Ut*/a], 

r = r*/a*, 0 + i Y = (@* + iY*) / Ua, w = a w*/U, r = r*/Ua, the 

equations for the outer flow are 
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wdS = 1 TBk.  J J  B 
(6  being the d e l t a  function) such t h a t  I 

The w(x,y,t) arises from v o r t i c i t y  created by the  separation of t he  

boundary and rear shear layers .  
I 

The so lu t ion  i s  

where 
i e  z = x + i y  = re 

and Y = 0. such t h a t  when I z I  = a ,  r 2 Bk = a rlBk"Bk I 

Now 

(27) 
- i e  - -Go + i V "  = e (-vo + iu") dw 

dz 
- -  

The form of the equations used in the computations, as in Part 11, are 

obtained as follows; since 

22 



. 
1 

2 a z  

2 r 

Bk 

- dw = 1 - - - a a + i  a 1 - 
2 z  dz Bk 2?T 8 2 

z -  

then 

and 

(x-iy) 
2 2 [X2-Y2-2iXYl - ai - u" + i G 0  = 1 - a 

r 4 r 

+ c 
6 2= 2 

1 6k r 

+ 2  r 

2 
Y ' T + i  a 'Bk k;f'BkJ 

Bk 3 Bk 
L 

r2Bk 

S i n c e  

2 Bk 
r -i 

- i 0  Bk 
- i e  aie re - 

$k 
x 

2Bk 
r 
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i(e-e ) 
2 -ie a; rBk ( "'Bke Bk ie a e 
r 2 2 - - + i  1 - -v0 + iuo = e - 2T 

B rlBk 
r 

n L a i(8-8 ) 
r - -  e Bk 

r2Bk 

- ' Bk 2 + L )  r 

such that when r - a, 

2 Non-dimensionalizing the pressure as p = 2p*/pU , the Bernoulli 
equation is 

2 (u:2 + v: ) 
+: = f(t) - @ s t  + 2 

Then since 

Bk 
5% - e  + e - e  82 

@ = cos e(r + -1 - ai log r - r 2~ "1Bk 2@-~ 

where 
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I Since 

I 
r 

t - 5 %- gk lim Q y  - B k 6  - -  (ai) lim log r, 
I P 

dt v 

1 pa d r 
Bk 6 + - + - + - (aa) lim log r 

P f(t) = - i r B k  2 2 dt 
I 

such that the pressure coefficient on the surface 

c z p - p, = [2Qyt/- (UZ2 + v: 2 ) + 11 
P r=a 

Considering only those terms contributing to drag 

i 
I P 

Note that the term in equation ( 3 4 ) ,  lim log r, precludes an absol- 

determination of C 
P' 1 

3.3 Boundary Layer 

The unsteady two dimensional Navier-Stokes equations in polar 

coordinates are (nondimensionalizing as in the outer flow and with 
2 

T = 2.r*/pU ) ,  



DE 

where 

with 

and where 

D v u  2 P, 2 2u,e 
- - - = - -  + 6 [L[v] - -1 Dt r 2 r 

(4 sr 2 - ; T = 26 u, vs e ,r r w =  r 

V = -  1 

Re2DUS Ua 62 = 

t = t > 0; u = f(r,e), v = g(r,e) 
0 

IC 

and boundary conditions at the surface 

BC r = a(t): u = 0, v = a 

Defining the inner variables 

substituting into equations (36) and letting 6 -+ 0, one obtains the 

(laminar) boundary layer equations. 
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DE 

Psij - - _ -  UU, 8 am,- 
a 

r a -  
+ - u = - -  + u,-- u,i + v u,r + - - - 

a a 2a rr 

- U,- r 0 = -p,; , = - , - r = 2 6 u , -  
r 

with 

t = to: u - = fy;,;), ;; = gyr,;) IC 

- -  BC 1) r = 0 :  u = v = o  

2) ; -+ =J: u' -f u,o(S,i) 

BC2) being derived from the matching concept. 

As such the Hall scheme of integration (reference 38) is not 

applicable. If the transformation is made, 

i - 
u = au 

a -  - r  a 
- i v = v -  

then the problem is 
.t 

(39) 

DE 

i i u 9 -  26u ,- 
a6 ' a 
r r w = -  - r =  
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BC 1) ; = 0: ui * vi = 0 
i I 

2) r' +- m: u + auz(e',t) 

where p,- has been evaluated at T + by virtue of p,- = 0 (404 
8 r 

Except for the source term "-da" in the continuity equation and 

the factor trl/a2fr multiplying the ( ),; terms, the form of the equation 

I 

I 

l 

is identical with the classical equations. 

method by the inclusion of a source term and modifying finite 

difference in s terms by the factor l/a (t), the Hall scheme is applicable. 

Thus modifying the Hall 

2 

3 .4  Boundary Layer Separation Region 

The numerical integration scheme used to obtain solutions to the 

unsteady two dimensional laminar boundary layer equations, being based 

upon boundary layer approximations, is not valid at the separation 

region. 

flow is a controversial issue (references 36-38). The approach used 

here is the classical one of carrying over the definition of separation 

for steady flow, i.e. T = 0, to unsteady flow. 

In addition, a definition of the separation region in unsteady 

Employing T = 0 as the definition of separation, the numerical 

scheme used did predict a meaningful separation region (based upon the 

constant-radius solution). In the scheme actually used the particular 

grid point on the cylinder immediately upstream of the point at 

which T L 0 was used to define the separation point, 9 . 
S 

3.5 Boundary Layer - Outer Flow Interface 
Let the separation point of the boundary layer be gs(tk) E gSk 

where t are the discrete times of the numerical integration. Physically, k 



at this point, the vorticity created in the 

the outer flow. This is found as follows: 

The vorticity flux across the section of 

m 

r,t(tk) = J w u dr 
a 

boundary layer passes into 

the boundary layer at 

- 
Since (I) = u,;/6, u = and dr = Gdr-in the boundary layer 

using no-slip. 

this vortex flux is summed k < < tk+l' During the period t 

into one point vortex of strength, 

(t,) Atk; Atk - - tk+l - tk (43) 

where B denotes the point vortex label. 

Considering this vortex to be in the outer potential flow, its 

The surface velocity due to this images are born at the same time. 

just born point vortex and its images is -rBk/5 where 

distance from the surface of cylinder into the flow. 

is used to cancel the velocity at the surface induced by the outer 

flow minus this new born vortex, then its position is 

is its 

If this velocity 
* 

where IuE I is induced by outer flow minus the new born vortex. 



Alternatively, this can be interpreted as a condition on the Atk 

of numerical integration of the boundary layer; i.e. 

2r% 

Iu: I 
I -  

Atk ( 4 5 )  

where now 

(found, for example, by the first moment of the vorticity distribution). 

% 1/= , of the order of the boundary layer thickness 

Now this argument must be compatible with the constraint on Atk 

imposed by the workability of the numerical integration scheme employed 

in the boundary layer. 

A At found by equation (45) was used successfully in early runs k 
but it was found that increasing the Atk over this value lead to the 

same results with a savings in computer time. 

k 
numerical integration scheme for the 

workable, and ii) the resulting %, 

Thus the final results used a At which was such that i) The 

boundary layer equations was 

as given by equation ( 4 4 ) ,  was 

"in" the boundary layer which was assumed to be much less than the 

radius of the cylinder; i.e. % < O.la. 

3.6 Rear Shear Layer 

The mathematical model described so far leaves the satisfaction 

of the no-slip condition at the rear of the cylinder in the absence of 

the boundary layer (i.e., where the separation point is upstream) to 

the velocity induced by the array of free shed point vortices. 

induce a velocity on the surface counter to that given by uniform 

flow over a cylinder. However, the counter-velocity sometimes 

These 
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exceeds the  la t ter  ve loc i ty  and the  no-slip condition i s  not  

s a t i s f i e d .  

To s a t i s f y  the  no-slip condition, t h e  exis tence of a rear shear -- 
l aye r  i s  postulated.  The rear shear l aye r  is  similar t o  a boundary 

l aye r  except t h a t  the  outer  flow i s  ro t a t iona l .  Since the re  is  no 

theory f o r  such a rear shear l aye r  ( t i m e  dependent) and since i ts  

prime cont r ibu t ion  is the  production of v o r t i c i t y ,  then i t  is  

postulated:  

a )  t he re  exists a rear shear layer  when lu t l  > 0.1. 

For 0 < 0 < (with similar equations f o r  TI < 8 <  IT), 

t h e  separat ion point  of rear shear l aye r  is glven as a b) 

func t ion  of the boundary l aye r  separat ion point  l oca t ion  

by means of t he  following: (see Figure 6 )  

8 - 0  er - eo 
0 m m 

Thus the  loca t ion  of the  separat ion region of the  rear shear 

l a y e r  i s  pr imari ly  a funct ion of the boundary l aye r  separat ion 

l o c a t  ion. 
r c )  A poin t  vortex is born a t  0 of s t rength 
S 

a t  a poin t  
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where 

only if 

K 

2 0  
desk 
dt 

d) N ( 1  5 )  point vortices are replaced by one point vortex of 

strength 

k = l  
r 

at position m = - < 0.1 rk TC.:> 

f <uz> = average of uX at 8 . 
S 

where 

This operation is used to reduce computer time and is 

allowable since one just born point vortex is of small 

strength (compared with one born from the boundary layer) 

and the separation point, as defined above, undergoes 

oscillation. 

alescing mechanism). 

Thus the operation is an averaging and co- 

3.7 Wake-Vortex Convection 

The sum of point vortices in the outer flow define the wake. 

Each point vortex, labeled B ,  moves with the Cartesian velocity 

components of the outer flow. Thus 

Bk’ Bk’ tk) = x + At ;“(x Bk+l Bk k X 

where the contribution to [Go ,  G o ]  of the point vortex at [x Bk”Skl 

is omitted. 
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3.8 Wake-Vortex Diffusion 

A point vortex undergoes both convection and diffusion. 

Convection is treated in the manner just described. 

handled as follows: 

governing equation is the diffusion equation with the potential 

solution as the initial condition. 

Diffusion is 

for an isolated stationary point vortex, the 

Thus following reference 39, 

DE 

0 
r 
2T ’ 3- r = O  t = 0: 

= 0 ,  r > O  

The solution is, with = l/Re(= 1/Re2Dus) 

-Re r2/4t Re e u(r,t) = - 4Trt 
rO 

with an induced velocity distribution (see Figure 7). 

2 
1 (52) 

-Re r / 4 t  (1 - e 
2~ r r Io I w r dr de = - 2 ~ r  

0 u(r,t) - 
0 

The viscous core radius r (t) is defined as the distance from 
C 

the center to the point at which u is a maximum. From the above 

equations this is 

5.04t 
rc(t) = Re 

4 For R = 4.10 e 

(53) 
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Then the potential flow solution for a point vortex is assumed 

valid for r > rc (see Figure 7). 

The concept of a core radius r 

Surface pressure. 

of the surface of the cylinder, a potential flow velocity distri- 

bution would induce a high velocity at the surface which would 

imply a peak in the pressure distribution on the surface. 

Approach of Two Point Vortices. If two vortices are close 

together anywhere in the flow, the potential flow velocity 

distribution would induce local high velocities. 

(Although peaks have been found experimentally, their small scale 

is used in two applications. 
C 

If a point vortex is located in the neighborhood 

property is not compatible with the present mathematical model). 

Both effects are resolved by the diffusion action which reduces 

the potential flow velocity in the neighborhood of the point vortex. 

One way to resolve this i s  to program an r as a function of the 
C 

life-time of a point vortex via equation (53) and use the velocity 

distribution (see Figure 7). 

u = 0; r < rc(t) 

(55) = - .  , r > r (t) (potential flow) 
2 ~ r  C 

However, the employment of r as a function of t is insufficient 
C 

within the present mathematical model which employs an approximation 

to the convection of the vortices as in equation ( 4 9 )  [i.e. Ax At]. 

Thus the errors inherent in this convection approximation could place 

a point vortex sufficiently close to the surface or another point 



vortex such that r for a small times is insufficient t o  rule out 

high local velocities. 
C ~ 

1 

I In lieu of the r as a life-time function, the values of r = .OS 
C C 

was used throughout. This is an average value of the life-time 

function, compatible with a large number of vortices, and is sufficient 

to rule out singularities. 

3.9 Wake-Vortex Coalescence 

The wake consists of a set of point vortices, the number of which 

grows with time. To reduce the computing time, the number is reduced I 

at certain times by means of coalescing pairs of vortices Into one 

vortex. 

vortex is equivalent to that induced by the original pair, and the 

times at which this operation is applied are those times at which the 

The criteria are that the velocity field induced by the new 

I 

number of vortices is overly sufficient to yield an acceptable flow 

field and so a reduction of the number does not destroy the intrinsic 

structure of the wake (references 40 and 41). 

I 

I 

I 
I 
I 

1 The operation is as follows: two point vortices of strengths r 
l 

and r2, at [x ,y ] and [x2,y2] respectively are replaced by one point 1 1  i 
vortex of strength r at [x3,y3] where 3 

I 

r3 = r + r2 1 
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(absolute signs to coalesce vortices of opposite sign). Then, if 
2 

(x2 - xl)rl and (Y, - yl)/rl, (r: = (x - Xi), + (y - y,) ;i = l,,,] 

are of order E << 1 then 

G3 = (G1 + ii2)(1 + O ( E ) )  

G3 = (G1 + G2)(1 + O ( E ) )  (57) 

3.10 Wake-Vortex Stability 

For early times the flow field consists of an outer potential 

flow over a cylinder with free point vortices at the rear and an 

inner flow (the boundary layer and a possible rear shear layer) with 

all solutions symmetric about y = 0. It is known that this structure 

is unstable and asymmetry arises (references 42 ,43 ) .  This is usually 

obtained by supplying a small perturbation to the point vortex array 

and having the system determine the new stable asymmetric structure. 

However, for the times involved in the application of the theory, 

there would be negligible asymmetry. Thus to reduce computer time, 

symmetric wakes were assumed. 

3.11 Vortex Flux Parameter 

It was found that the accuracy of the resulting force and moment 

data in comparison with experimental data (see Section 5.0) could be 

improved in certain cases by reducing the vorticity in the wake by a 

factor (1-a)lOOX from the value actually produced by the separation 

of the boundary and rear shear layers. For the two tests performed 

(see Section 4.0) no reduction was required for the closed-ended 

ellipsoid (i.a. u = 1) but a reduction of 40% improved the results 

for the open-ended ogive-cylinder (i.e. CJ = 0.6). 
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This is the only empirical factor in the technique. Its role 

may be viewed as similar to the eddy viscosity in turbulence; i.e. 

empiricism arises in the absence of complete theoretical understanding. 

In this situation, there is no theoretical derivation of the 

equivalence underlying the unsteady cross flow analogy. 

light would be shed on this with further testing. 

Further 

This factor is not related to the'reduction in wake vorticity 

from that produced by the boundary layer alone in the classical 

problem of a circular cylinder of constant radius impulsively started 

from rest (see references 44,45). In earlier work with the constant- 

radius-solution, treating this problem, it was found that the rear 

shear layer effectively accounted for this reduction by introducing 

vorticity of sign opposite to that introduced by the boundary layer. 

3.12 Drag 

At representative times, the drag is computed in equations (ll), 

(12), (13) and (14). The pressure is obtained from the Bernoulli 

equation, equation (35) and the shear stress from the boundary layer 

solution T = 26 ;,- = 26 ;(A;,et)/AF by virtue of the no-slip condition. r 

Within a completely inviscid model, the drag may be obtained using 

the vortex-impulse concept or Lagally's theorem. 

obtained herein by pressure and shear integration since the wake 

model, while primarily inviscid, does have diffusive effects and, 

more importantly, the surface pressures a r e  of interest in establishing 

the equivalence property. 

However, drag is 

Computational times are of the same order. 

37 



4.0 Applications 
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4.1 Test Data 

The foregoing theory will be applied to two bodies for which 

experimental data is available. The first test case is that of an 

ogive-cylinder with a blunt base at subsonic speeds (reference 6). 

The second test case is that of an ellipsoid of revolution at low 

speeds (reference 7). 

geometry is that of a closed-ended body such that for all angles of 

attack, there may not exist any boundary layer on the aft end. The 

theory as presented so far does not cover this eventuality (although 

it may easily be extended). However, even without this specific 

capability, meaningful results can be obtained. 

The latter presents a severe test in that the 

Test Case 1: Ogive-Cylinder (Reference 6) 

Geometry and Test Condition 

where Rn is the nose (ogive) length. 

R 
R = 1.282 m, d = .1194 m, R 3d, f = a =  10.74  n 

6 = 4.7 x 10 , M = 0.3 Re3DS 

.0597 m i = - =  d 
2 



Inviscid Theory Results 

dr r a  0 r c t -  

n f o r  
Slender Body 

CN = 2cr 

V O l .  = 2a [- - 11 
cM RSB 

Test Case #2: Ellipsoid of Revolution (Reference 7 )  

Geometry and Test Conditions - 

R = 0.6096 m., d = 0.1524 m,, f = = 4 d 

n 2 91.924 newt./m. V = 12.192 m./s., p = 1.226 kg./m. , q = - = 
3 ;v2 

2 

-6 2 5 
3DS 

v = 14.957 10 m /see., Re = 4.97 x 10 

R 
a = ro*(i*) di* = .05913 m. 

0 
R 

Inviscid Theory Results 

2 Potential Flow c = f f cos f3 sin 2a n 1 2  

I T 1  A 

2 2  where fl = - (- - z), f 2  = 1.0062 where 
A 1 2  

(2 - 2 
cos f3 = 

i- 16;(1 - i) 

.5185 sin 2a - 
‘N - ‘M,1/2 
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I T 1  Slender Body cn = T (7 - sin 2a 

2 sin 2a 
CN = 0, c M,1/2 = 3  

4.2 Boundary Layer Integration Parameters 

The following parameter values were used: 

A i  = .14, A8 variable, At = .125 

4 . 3  Numerical Integration Parameters: 

The particular numerical integration sub-routines are to be 

found in Part 11. 

less than 2% error is incurred in obtaining the integral. 

The sub-routines are such that with a given integrand, 

5.0 Results and Discussion 

5.1 General Results 

The results of applying the theory to the two test cases are 

to be found in Figures 8-18. 

Primarily the theory yields results capable of describing 

experimental data at high angles of attack where inviscid theories 

(potential and slender body) fail (Figures 8 and 14). In achieving 

this state of data only one element of empiricism, the vortex flux 

parameter, a, was used. 

5.2 Ogive-Cylinder 

Figure 8 shows the basic results, the comparison of the values 

obtained by this technique and inviscid theory with experimental 



data for the normal force and pitching moment. 

inviscid theory, incapabie of describing repzration phenomena, 

decreases rapidly with increase in the angle of attack while the 

present theory remains valid. 

The accuracy of 

A value of 0.6 was used for the vortex flux parameter, u, to 

obtain these curves. There is the potential of increased accuracy 

in these results through further testing based upon variation of 

this parameter (see below, in discussion of Figure 10). 

Figure 9 presents the basic input data to the curves of Figure 8, 

the sectional normal force coefficient c (;,a) as a function of the 

axial station 2. It is noted that for 0 < < 0.3, inviscid theory 

suffices. 

of the property of no upstream influence intrinsic to the unsteady 

cross flow analogy. The flow field relevant to Figure 9 is subsonic 

which allows for upstream influence and the inviscid theory results 

contain this property. 

at a = 20° where any slender body equivalence principle should not be 

expected to hold. 

unsteady cross flow analogy. 

n 

This behavior is pertinent to the discussion (see Section 2.1) 

Yet there is agreement between the two, even 

This behavior lends support to the use of the 

For > 0.3, inviscid theory predicts c = 0, while results of n 
employing the unsteady cross flow technique match experimental data. 

This is a separated region where the use of inviscid theory I s  

obviously invalid. 

Figure 10 displays the effect of a change of u In the c (;>,a) n 
VS. 55 data. (At = ,0625 was used in these runs while At - .125 
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was used in the runs of Figures 8 and 9. However, on the basis of 

early testing based upon At variation, the data is relatively 

insensitive to this change in At). Two values of u were used 0 = 0.5 

and u = 1.0. The reduction of u reduced the theoretical results 

to the neighborhood of the experimental data. 

behavior lies in the physics of the two dimensional unsteady flow 

An explanation for this 

problem. The drag value approaches zero as the wake disappears 

(D'Alambert's paradox). Thus a reduction in the wake strength 

reduces drag which is proportional to the sectional normal force. (Note 

that this argument, based on a cylinder of constant radius, is valid 

on the aft end of the ogive-cylinder). As a result of this test the 

value u = 0.6 was decided upon. 

It is noted that the experimental data was based upon a Re3DS = 

6 VR/v = 4.73 x 10 

= Ua/v = 1.9, 3 . ,  5.7, 7.5, and 8.9 x 10 for OL = 5, 10, numbers Re 

15, 20 and 24" respectively (see equation (16)). For a two dimensional 

circular cylinder in steady flow a Reynolds number of 4.5 x 10 is used 

yielding the two-dimensional unsteady flow Reynolds 
4 

2DUS 

4 

as a lower limit for transition and this value is exceeded for a 2 15". 

However, the assumption is made that laminar boundary layers exist at 

all these Reynolds' numbers, including transition values. 

Figure 11 indicates typical behavior of the coefficient of 

pressure on the surface at various axial stations and angles of 

attack. As noted in the preceding the two-dimensional unsteady pressure 

distribution yields a logarithmic singularity. However, this term 

is independent of 0 and so a C , subject to an arbitrary additive 
P 

42 



factor, can be determined. T h h  these curves are qualitative. 

Within this context, the agreement is very good. 

Figure 12 presents the separation regions of three dimensional 

steady flow as obtained by this technique. 

data, these results can only be deemed physically acceptable. 

In the absence of experimental 

Figure 13 show wake vortex patterns. These present the positions 

of shed point vortices at one time or axial position and their position 

at the succeeding time or axial position. 

vorticity and the partial streamline pattern is indicated. 

Thus the distribution of 

5.3 Ellipsoid of Revolution 

The basic result for the ellipsoid, the comparison of the values 

obtained by this technique and inviscid theory with experimental data 

for the normal force and pitching moment about the midpoint are 

presented in Figure 14. In this case the improvement of this technique 

over inviscid theory is marked since the latter yields C 

the closed-end). 

- 0 (reflecting N 

These results employed a vortex flux factor of u = 1.0 (i.e. no 

reduction) (see discussion below for Figure 15) 

The curves of Figure 14 are a result of the integration of the 

section normal force coefficient cn(;,or) over z .  

cn(;,a) is presented in Figure 15 as a function of the axial station 

at various angles of attack, a. 

integrands, attention had to be paid to the behavior in the neighborhood 

of the base. In this region, there is no boundary layer; the tail 

lies within the wake. 

The integrand, 

In interpreting these cumes as 

As noted earlier the theory ae developed thus 
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far does not handle this situation although the extension can easily 

be made. And before the computations reach the section of no boundary 

layer, the radius a(t) may change rapidly (for a closed-ended body 

such as the ellipsoid) such that very fine integration meshes are 

required with consequent increase in computer time. Furthermore, the 

basic assumptions of the two-dimensional unsteady boundary layer 

solution technique may fail, particularly with regard to the property 

of no pressure change across the boundary layer. 

In lieu of increasing the complexity of the technique, computation 
4 

was formally stopped at = 0.9 and at a straight line drawn to f 
complete the curve at (c 

Figures 15b and 15c show the differences in behavior for two stopping 

i) = (O,l.O), a theoretically exact point. n' 

stations = 0.9 and 1.0. The latter value, in both cases,departs 

from the experimental data. 
f 

Figures 15b and 15c also show the effect of varying the vortex 

flux parameter u.  For a = 10' there is little difference but for 

a = 20" the difference is marked. The behavior in this case is the 

same as for the ogive cylinder in that a reduction in u reduces drag 

which in turn reduces the section normal forces. However, in this 

case, the physics is not as clear since the corresponding two dimensional 

unsteady problem is that concerned with a cylinder whose radius is 

changing rapidly with time. Also, the reduction in vortex flux 

increases the error " s  opposed to the situation in the case of the 

ogive-cylinder. 

5 The experimental data was obtained.for a Re = 4.97 x 10 3DS 



yielding the two dimensional unsteady flow Reynold's numbers of 
3 

= 3 . 4 ,  5 . 0 ,  8 .36  and 16.5 x 10 at a = 4, 6, 10 and 20" Re2DUS 
respectively (see equation (16)). Based upon two dimensional steady 

flow, laminar boundary layers should exist. 

Figure 16 shows the pressure distribution for a = 20' at various i. 
The curve must still be considered as qualitative (i.e. with an 

arbitrary additive constant). 

agreement is found at 

the wake, even this qualitative agreement is lost. 

It is to be noted that qualitative 

= .72 but for 2 > .86 where the tail is in 

Figure 17 depicts the regions of separation of a three dimensional 

steady flow field as determined by this theory compared with that 

determined by a finite difference solution (reference 4 6 ) .  

agreement is fairly good. 

windward region but in this region, the particular behavior determined 

by means of this technique agrees with experimental data (reference 4 7 ) .  

The 

Of note are the divergences on the aft 

Figure 18 show wake vortex patterns, explained in the ogive- 

cylinder case. 

5 . 4  Vortex Flux Parameter 

As was noted, the value of the vortex flow parameter used was 

The 

open- 

cs = 1.0 for the ellipsoid and 0 = 0.6 for the ogive-cylinder. 

prime difference between the two geometries is at the base: 

ended for the ogive-cylinder and closed-ended for the ellipsoid. 

Thus the recommendation for use of this technique for an arbitrary 

body is a value of a given by 
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0.8r * ( a )  
d 
0 u = 1.0 - 9 

a linear fit over the two test points. 

5.5 Computational Times 

The maximum time for computation occurred for the ogive cylinder 1 

I 

I at an angle of attack of 24'. 

6500 at Purdue University). 

The time was 45 minutes (on a CDC 

Since the computation time is proportionpl.1 

to the final time of the problem, (df/a) tan a (see equation (2 ) ) ,  

an estimate of computational times required can be given by 
I 

I 

I 
fd 
7 tan a computational time (Din.) = 24 

fd L- tan a7 a 
J 0-C at a = 24O 

- - ,  - tan a 
2 * 5  fd 
a 

However, it is believed that substantial reductions are possible througl 

further work on the basic solution techniques and, to a lesser 

extent, in the programming. 

1 

6.0 Conclusions 

The method developed herein employing the unsteady cross flow I 

analogy and a discrete vorticity wake for the prediction of local flow 

conditions and overall forces and moments on bodies at high angles 

of attack with large regions of separated flow has been shown to be 

technically feasible. The method is based upon physical understanding 

of the flow and does not require a completd finite difference solution 

to the Navier-Stokes equations. 



The advantages of such an approach lie in the potential of 

such solutions to bring about further physical understanding with 

consequent new analytic solutions (e.g. the wake) and in the area 

of computer-aided-design of aircraft where the engineer requires the 

physical understanding. 

reduced computer time and storage although this may be offset somewhat 

with the advent of larger and faster computers. 

In addition, there is the advantage of 

The results support the use of the unsteady cross flow analogy 

for three dimensional steady separated flows. A theoretically 

derived equivalence between two dimensional unsteady and three 

dimensional steady flow has been replaced by one empirical factor, 

u,  with physical bounds, i.e. 0 < u I 1  (cf. the eddy viscosity in 

turbulent flow). 

of equation ( 5 8 )  for u ,  should shed further light on the role played 

by this factor. 

Further testing of the technique, with the use 
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(a)  - z = - 2 0 2 ,  a = 20' 

Figure 1 3  - Wake Pattern of Ogive Cylinder. 
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A 

(a)  - z = .197, a = 20' 

Figure 18 - Wake Pattern of Ellipsoid. 
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(b) - z = .363, a = 2 0 °  

Figure 1 8  - Continued 
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( c )  - = .530, a = 20° 

Figure 1 8  - Continued 
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(d)  - z = .700., a = 20° 

Figure 18  - Continued 
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( e )  - z = .863, a = 2 0 °  

Figure 18 - Concluded 


