General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

LSI ER-251-10-2 CR-151983

EVALUATION OF A SPACECRAFT NITROGEN GENERATOR

SECOND ANNUAL REPORT

by

R. D. Marshall and W. J. Knebel

(NASA-CR-151983)EVALUATION OF A SPACECRAFTN77-25789NITROGEN GENEFATOFAnnual Report (LifeSystems, Inc., Cleveland, Ohic.)41 pHC A03/MF A01CSCL 06KG3/5434864

January, 1977

Prepared Under Contract NAS2-8732

by

Life Systems, Inc.

Cleveland, Ohio 44122

1

for

AMES RESEARCH CENTER National Aeronautics and Space Administration

ER-251-10-2

-

.

4

.

EVALUATION OF A SPACECRAFT NITROGEN GENERATOR

Second Annual Report

by

R. D. Marshall and W. J. Knebel

January, 1977

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the authors or organization that prepared it.

Prepared Under Contract No. NAS2-8732

by

LIFE SYSTEMS, INC. Cleveland, Ohio 44122

for

AMES RESEARCH CENTER NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

FOREWORD

The development work described herein was conducted by Life Systems, Inc. during the period February 1, 1976 to January 31, 1977. The Program Manager was Richard D. Marshall. Support was provided as follows:

Personnel

William J. Knebel, PhD J. David Powell C. Tom Burger Franz H. Schubert John W. Shumar

Richard A. Wynveen, PhD

Area(s) of Responsibility

NGM Development and Testing

Electrical Design

Control Software Design

System Design Support

Product Assurance

Program Administration

The Contract Technical Monitor was P. D. Quattrone, Chief, Advanced Life Support Project Office, NASA Ames Research Center, Moffett Field, California.

TABLE OF CONTENTS

				Page
LIST	OF FIGURES		• •	ii
LIST	OF TABLES			iii
LIST	OF ACRONYMS			iii
SUMM	ARY		•	. 1
INTR	ODUCTION		•	. 2
	Background	• •	:	23
NITR	OGEN GENERATION MODULE DESIGN		•	. 4
	Concept Description	· ·	:	. 4 . 7
	Hydrazine Dissociation	•••	:	. 11 . 11
	Interfaces			. 12
NITR	OGEN SUPPLY SUBSYSTEM DESIGN			. 12
	Design Specifications			. 12
	Subsystem Controls	: :	:	. 19 . 22
SUPP	ORTING TECHNOLOGY ACTIVITIES		•	. 22
	Palladium/Silver Separator Performance Characterization Ammonia Removal Test			
CONC	LUSIONS		•	. 27
RECO	MMENDATIONS			. 29
REFE	RENCES			. 29
APPE	NDIX 1 NGM DESIGN SPECIFICATION			. A1-1

40

LIST OF FIGURES

FIGU	RE	Page
1	NGM Staging Concept Block Diagram	5
2	Nitrogen Generation Module Mockup (Assembled)	8
3	Nitrogen Generation Module Mockup (Disassembled)	9
4	NGM Functional Schematic	10
5	Nitrogen Supply Subsystem Block Diagram	16
6	Nitrogen Supply Subsystem Schematic	18
7	NSS Operating Modes and Allowable Transitions	20
8	Effect of N ₂ Generation Rate and Pressure on Separator Performance	24
9	Effect of N ₂ Delivery Pressure on Separator Performance.	25

LIST OF TABLES

TABL	<u>E</u>	Page
1	NGM Design Specifications	6
2	NGM Nominal Operating Conditions	13
3	Nitrogen Supply Subsystem Design Specifications	15
4	Actuator Conditions for NSS Operating Modes	21
5	NSS Sensor List	23
6	Palladium/Silver Separator Baseline Operating Conditions	26
7	Ammonia Removal Test Results	28

•

LIST OF ACRONYMS

ARS	Air Revitalization System
CRS	Carbon Dioxide Reduction Subsystem
EC/LSS	Environmental Control/Life
	Support System
NGM	Nitrogen Generation Module
NGS	Nitrogen Generation System
NSS	Nitrogen Supply Subsystem
TSA	Test Support Accessories

SUMMARY

A research and development program is presently being conducted at Life Systems, Inc. to develop a method of generating nitrogen for cabin leakage makeup aboard space vehicles having longer duration missions. The nitrogen generation concept is based on using liquid hydrazine as the stored form of nitrogen to reduce the higher tankage and expendables weight associated with high pressure gaseous or cryogenic liquid nitrogen storage. The hydrazine is catalytically dissociated to yield a mixture of nitrogen and hydrogen. The nitrogen/hydrogen mixture is then separated to yield the makeup nitrogen. The excess supply of hydrogen would be available for use in the reduction of metabolic carbon dioxide.

The design of a seven-stage Nitrogen Generation Module has been completed. The design successfully integrates a hydrazine catalytic dissociator, three ammonia dissociators and three palladium/silver hydrogen separators. Alternate ammonia dissociation and hydrogen separation stages are used to remove hydrogen and ammonia formed in the dissociation of hydrazine, and results in very low ammonia and hydrogen concentrations in the product nitrogen stream. The Nitrogen Generation Module has been designed to generate 3.6 kg/d (8.0 lb/day) of high-purity nitrogen containing less than or equal to 0.2% hydrogen and 50 ppm ammonia. The dissociation and separation stages are packaged as a single unit to minimize heat rejection to ambient since both operate at elevated temperatures. The single package concept allows the heat generated during the dissociation of hydrazine to reduce the heater power required to maintain the Nitrogen Generation Module at temperature.

The design of a Nitrogen Supply Subsystem as an integratable subsystem for a central spacecraft Air Revitalization System has been completed. The Nitrogen Supply Subsystem consists of the hydrazine storage and feed mechanism, the Nitrogen Generation Module, the peripheral mechanical and electrical components required to control and monitor subsystem performance, and the advanced instrumentation required for the Nitrogen Supply Subsystem to interface with other Air Revitalization System subsystems and controls. The Nitrogen Supply Subsystem has been designed to deliver nitrogen at a_2 rate of 3.6 kg/d (8.0 lb/day) at pressures less than or equal to $1,725 \text{ kN/m}^2$ (250 psia). The subsystem recovers 84% of the hydrogen contained in the feed hydrazine stream and delivers 0.44 kg/d (0.96 lb/day) of hydrogen for use in the central Air Revitalization System Carbon Dioxide Reduction Subsystem.

Supporting technology activities were completed to characterize palladium/ silver hydrogen separator performance and to verify the Nitrogen Generation Module staging concept of ammonia removal. The effect of nitrogen generation rate and delivery pressure on separator performance was characterized over the operating ranges of 3.2 to 9.0 kg/d (7.0 to 19.8 lb/day) and 690 to 2,070 kN/m² (100 to 300 psia), respectively. The data collected for the palladium/silver separator was used to develop a mathematical model to size the separation stages in the Nitrogen Generation Module. An experiment was completed to demonstrate that low ammonia concentrations in the product nitrogen stream are possible using the staging concept. Mixtures of nitrogen, hydrogen and ammonia were fed into a temperature controlled packed bed ammonia dissociator. The experiment demonstrated that an ammonia concentration of 1.03% in the feed stream is reduced to less than 50 ppm at temperatures greater than or equal to 777K (940F). The actual inlet ammonia concentration to the final Nitrogen Generation Module ammonia dissociation stage is only 0.09%. The Nitrogen Generation Module should therefore meet design requirements.

INTRODUCTION

Future long-term manned spacecraft missions will utilize an atmosphere of nitrogen (N_2) and oxygen (O_2) . Space vehicle gas leakage and cabin depressurization requirements necessitate on-board storage of the primary cabin atmospheric constituents N_2 and O_2 . The N_2 component of air can be stored as liquid hydrazine (N_2H_4) and the N_2H_4 catalytically dissociated to an N_2 and hydrogen (H_2) mixture. The N_2/H_2 mixture is then separated to yield the makeup N_2 . The excess supply of H_2 would be available for use in the reduction of metabolic carbon dioxide (CO_2) .

A research and development program has been established to evolve the capability for generating N_2 for cabin leakage makeup aboard a space vehicle of mission duration requiring regenerative methods for reprocessing the crew's metabolic products. The development program is focused on the Nitrogen Supply Subsystem (NSS) for a regenerative Environmental Control/Life Support System (EC/LSS).

Background

During the previous program⁽¹⁾ Life Systems, Inc. (LSI) identified two attractive N₂ generation systems based on the catalytic dissociation of N₂H₄. In the first system, liquid N₂H₄ is catalytically dissociated to yield an N₂/H₂ gas mixture. Separation of the gas mixture to yield N₂ and the supply of H₂² is accomplished using a Polymer-Electrochemical N₂/H₂ Separator.^(2,5) In the second system, the N₂/H₂ product gas from the dissociator is separated in a Palladium/Silver (Pd/Ag) N₂/H₂ Separator.

The program culminated in the successful design, fabrication and testing of an N_2H_4 Catalytic Dissociator, a Polymer Electrochemical N_2/H_2 Separator and a two-stage Pd/Ag N_2/H_2 Separator. Based on the results of this program it was recommended that a N_2 Generation System (NGS), and subsequently an NSS, be developed based on N_2H_4 catalytic dissociation and the Pd/Ag method of H_2 separator.

Program Objectives

The objectives of the present program are to develop and evaluate:

(1) References cited at the end of the report.

- 1. a laboratory breadboard of an NGS based on the catalytic dissociation of N_2H_A ,
- 2. a Nitrogen Generation Module (NGM) to reduce ammonia (NH $_3$) concentrations in the product N $_2$ and
- 3. an engineering model of the NSS which incorporates the NGM and is integratable within an Air Revitalization System (ARS).

The NGS consists of the N_2H_4 Catalytic Dissociator and the two-stage Pd/Ag Separator developed on the previous contract (NAS2-7057). The NGM consists of an advanced Pd/Ag Separator design and N_2H_4 dissociator design to lower NH₃ concentration in the product N_2 . The NSS incorporates the N_2H_4 storage and feed mechanism, the NGM and the advanced instrumentation required to control and monitor NSS performance, and to interface with other ARS subsystems and controls.

Program Organization

The program was organized into five tasks whose specific objectives were to:

- 1. Design, fabricate, assemble and functionally check out the Laboratory Breadboard NGS, the NGM and the NSS.
- 2. Design, fabricate, assemble and functionally check out the Test Support Accessories (TSA) required for the NGS and the NSS testing.
- 3. Establish, implement and maintain a Product Assurance Program throughout the contractual performance period to search out quality weaknesses and to define appropriate corrective measures.
- 4. Conduct an extensive test program on the NGS to establish the quantitative effects of key engineering parameters.
- Conduct supporting technology studies to support NSS technology development.

Program Status

The following activities were completed during the present reporting period:

- Nitrogen Generation Module Design
- Nitrogen Supply Subsystem Design
- Supporting technology activities in the area of Pd/Ag Separator testing for the NGM design math model and NH₃ dissociation testing to demonstrate <50 ppm NH₃ in the product N_2 .

NITROGEN GENERATION MODULE DESIGN

The function of the NGM is to generate N_2 and by-product H_2 from a liquid N_2H_4 feed stream. The NGM consists of alternate catalytic dissociation and Pd/Ag separation stages configured to give high purity N_2 and H_2 . The dissociator and separator stages are packaged as a single unit to minimize heat rejection to ambient since both operate at elevated temperatures. The single package concept allows the heat generated during the dissociation of N_2H_4 to reduce the heater power required to maintain the NGM at temperature.

Concept Description

A block diagram showing the staging concept is presented in Figure 1. The NGM consists of one N_2H_4 dissociation stage, three NH_3 dissociation stages and three Pd/Ag separation stages. The N_2H_4 feed/ N_2 product stream flows in series from stage to stage. The gas concentrations following each dissociation and H_2 separation stage are presented in the block diagram to demonstrate the method of obtaining low NH_3 and H_2 concentrations.

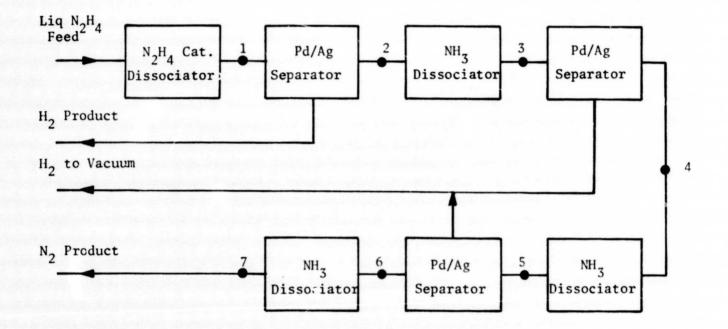
Hydrazine is dissociated in the first stage via the following reactions:⁽⁴⁾

$$N_2H_4 = 1/3 N_2 + 4/3 NH_3$$
 (1)

$$4/3 \text{ NH}_{3} = 2/3 \text{ N}_{2} + 2\text{H}_{2}$$

 $N_2H_4 = N_2 + 2H_2$ (3)

(2)


All the N_2H_4 is dissociated in this initial stage. Not all of the NH₃ formed by equation 1, however, is dissociated in the N_2H_4 dissociation stage.

The N₂/H₂ and unreacted NH₃ from the first stage, enters the first Pd/Ag separation stage. Most (90%) of the H₂ entering this stage is removed and collected at 172 kN/m² (25 psia) for use in the CO₂ Reduction Subsystem (CRS). The N₂ product gas from the first separation stage is then manifolded to the first NH₃ dissociation stage. The high NH₃ and N₂ concentration entering the dissociator favors further NH₃ dissociation and the formation of more N₂ and H₂ (equation 2).

Alternate H_2 separation and NH_2 dissociation stages are used to attain the final N_2 product purity. The H_2 removed in the remaining H_2 separation stages is vented to space vacuum and is therefore not available for use in the CRS. The H_2 separation to vacuum is required to attain the low H_2 concentration required in the product N_2 .

Design Specifications

The NGM design specifications are presented in Table 1. The detailed NGM component design specification is located in Appendix 1. The NGM was sized to

Stream	% N ₂	% Н ₂	% NH 3	Eff. %	, Temp, K (F)
1	32.8	64.0	3.2	93	1000 (1340)
2	77.3	15.1	7.6	90	644 (700)
3	75.8	22.8	1.4	80	811 (1000)
4	96.7	1.5	1.8	95	644 (700)
5	95.9	4.0	0.09	95	811 (1000)
6	99.8	0.08	0.09	98	644 (700)
7	99.78	0.2	19 ppm	98	811 (1000)
Sectors.					
in the second			A State of the second	din and the	and the second

FIGURE 1 NGM STAGING CONCEPT BLOCK DIAGRAM

5

TABLE 1 NGM DESIGN SPECIFICATIONS

N_2H_4 Feed Rate, kg/d (Lb/Day)	4.15 (9.14)
N_2 Generation Rate, kg/d (Lb/Day)	3.63 (8.00)
H ₂ Generation Rate, kg/d (Lb/Day)	0.44 (0.96)
N ₂ Product Composition, Volume %	
H ₂	<u><</u> 0.2
NH3	$\leq 5 \times 10^{-3}$
Water	<u><</u> 0.1
H ₂ By-product Purity, Volume %	>99.9
Surface Temperature Guidelines, K (F)	<u><</u> 322 (120)

deliver 3.63 kg/d (8.00 lb/day) of N₂ and 0.44 kg/d (0.96 lb/day) of H₂. The NH₃ concentration in the product N₂ is of prime concern in the NGM design since less than 50 ppm are required for direct utilization of N₂ in a spacecraft cabin atmosphere. The requirement for less than or equal to 0.2% H₂ in the product N₂ is not as critical since lower H₂ concentrations have been demonstrated previously. A final or cleanup H₂ separation stage could be added to any prototype/flight NGM design if required.

Hardware Description

Photographs of the assembled and disassembled NGM mockup are presented in Figures 2 and 3 respectively. The NGM was designed as an experimental laboratory unit. The goal of the NGM design was to demonstrate the staging concept. Volume and weight optimization were not primary considerations. The NGM was configured similar to that projected for the prototype/flight hardware. The NGM configuration is a cylinder having a diameter of 26.2 cm (10.3 in) and a length of 41.7 cm (16.4 in) including the outside layer of insulation not shown in Figure 2. The total NGM volume is 0.022 m° (0.79 ft^o) and the NGM will weigh approximately 61 kg (135 lb). The NGM's size corresponds to that projected for a six-man spacecraft application.

Operation

Figure 4 is a functional schematic of the NGM showing the orientation of the individual stages. The NGM performs three functions; N_2H_4 dissociation, NH_3 dissociation and H_2 separation. The temperatures of the dissociation stages and separation stages are controlled separately using two sets of heaters. Coolant N_2 is provided between the two temperature zones in the event cooling is required to control the two zones independently.

Hydrazine Dissociation

Hydrazine dissociation takes place in the center cavity of the NGM. Liquid N_2H_4 at a pressure of approximately 2070 kN/m² (300 psia) is injected into the dissociator through a capillary orifice in the header assembly. The diameter of the capillary opening is smaller than the quenching diameter for N_2H_4 to prevent propagation of the dissociation reaction back to the feed tanks. In the feed orifice N_2H_4 is taken from a liquid at ambient temperature to a vapor slightly above the boiling point of N_2H_4 at the operating pressure.

Hydrazine vapor enters the central dissociator tube at an elevated temperature and autocatalytically dissociates. The central feed tube is packed with 10 to 20 mesh tungsten chips to allow heat to transfer to the gas phase which promotes the autocatalytic reaction. A platinum screen is located at the end of the central feed tube to insure that any undissociated N_2H_4 reacts prior to entering the packed catalyst bed in the concentric annular housing.

At the end of the central tube the flow pattern of the product gases is reversed in direction. The product gases flow in the annular housing concentric with the central tube and exit at the hottest zone in the reactor. The

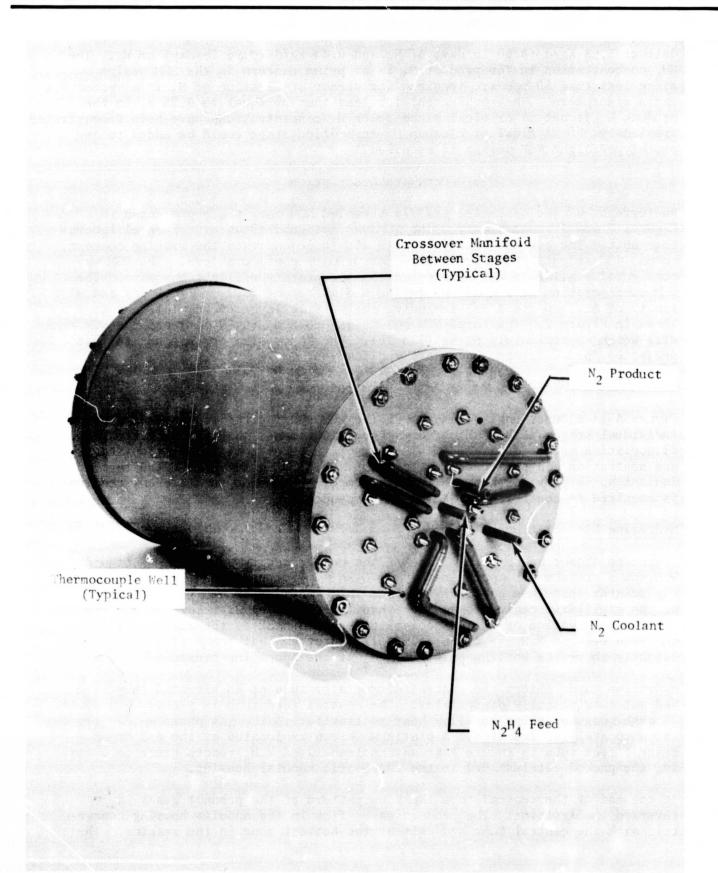
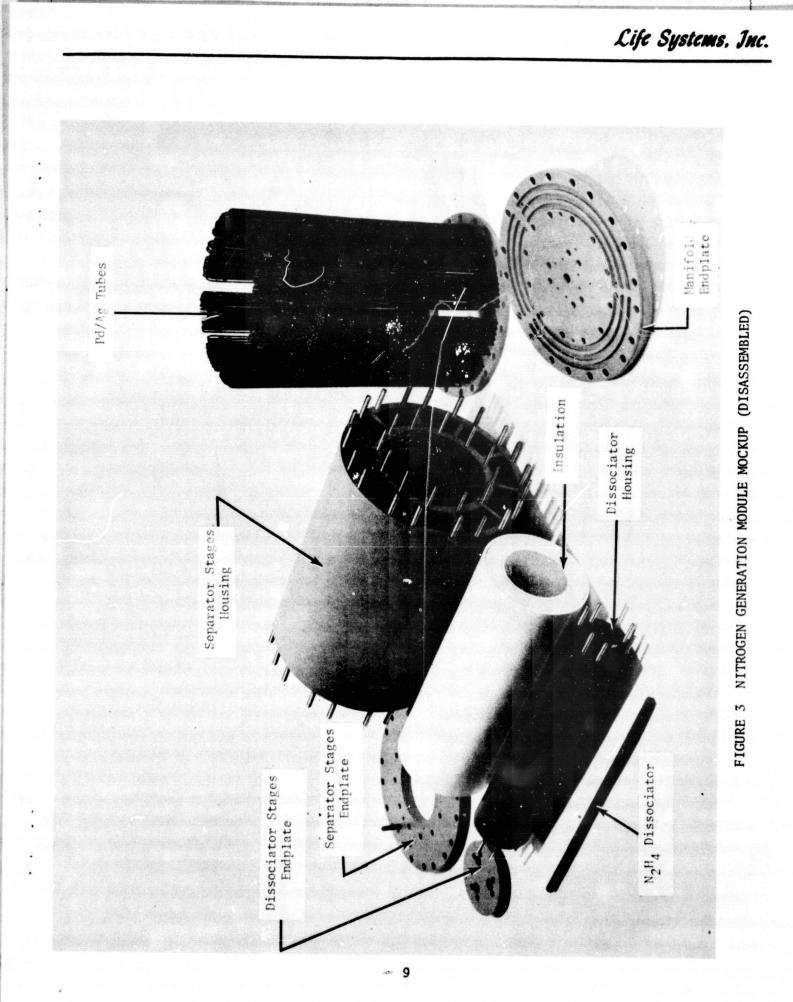
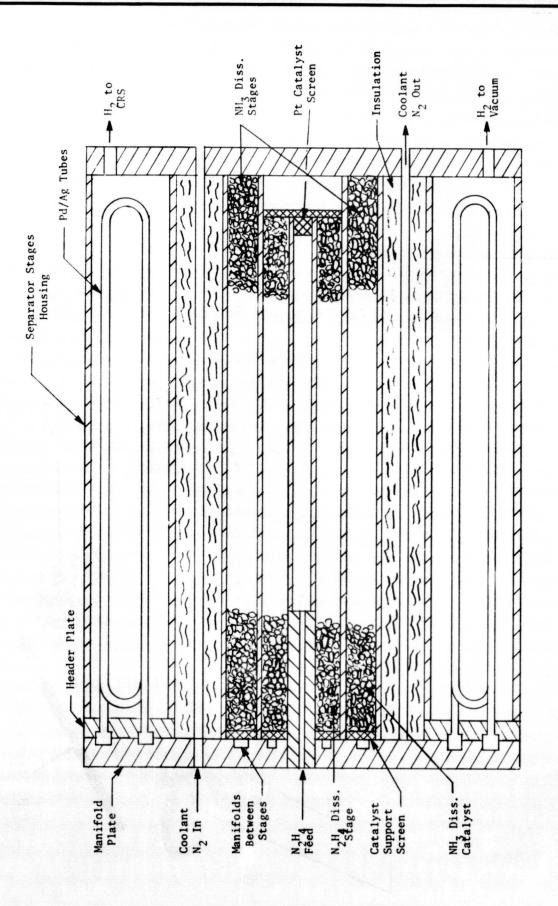




FIGURE 2 NITROGEN GENERATION MODULE MOCKUP (ASSEMBLED)

10

REPRODUCIBILITY OF THE ORIGINAL PAGE IS ROOM decomposition of NH₃ into N₂ and H₂ (equation 2) is favored kinetically and thermodynamically at higher temperatures.⁽⁶⁾ The "hairpin" type reactor design will therefore result in higher NH₃ conversion efficiencies in the N₂H₄ dissociation stage.

Tungsten catalyst retaining screens are used to prevent catalyst particles from being removed by the product gases. The product gas from the N_2H_4 dissociation stage is manifolded to the first Pd/Ag separation stage.

Ammonia Dissociation

The three NH₃ dissociation stages are located in the central NGM core around the outside of the N_2H_4 dissociation stage. The product N_2 gas stream, enriched in N_2 and NH_3 after passing through an H_2 separation stage, is fed into an NH_3 dissociation stage at the same end of the NGM as the N_2H_4 feed. The product gas passes through the packed catalyst bed traveling the length of the dissociator core. At the end of the first catalyst bed the gases are manifolded to the second portion of the catalyst bed in the dissociation stage. The product gas then travels back the length of the reactor core and exits at the same end of the reactor as the feed stream. Each NH_3 dissociation stage, therefore, consists of two side by side tubes packed with catalyst (see Figure 3).

Pd/Ag Separation

The three H₂ separation stages are located around the outside of the NGM. The Pd/Ag tubes are connected to a donut shaped header plate and are thermally isolated from the central NGM core where N_2H_4 and NH_3 dissociation takes place. The reason for the thermal isolation is the difference in operating temperatures. The H₂ separation stages operate at 644K (700F) and the dissociator core is maintained at 1000K (1340F).

The H₂ separation stages are connected to the main manifold plate which manifolds the process gases between the H₂ separation and the dissociation stages. The N₂/H₂ mixture from a dissociation stage enters the inside ends (i.e., closest to the center of the NGM) of Pd/Ag tubes in the stage. The process gas passes through all of the Pd/Ag tubes in each individual stage in parallel. The H₂-depleted gas stream from a H₂ separation stage is then manifolded from the outside ends of the tubes to the next dissociation stage.

In the first H₂ separation stage, H₂ is collected at less than or equal to 172 kN/m^2 (25 psia) for use in the CRS. The H₂ removed in the second and third H₂ separation stages is vented to vacuum. The H₂ removed in the second and third stages exhausts the NGM through a common manifold.

Temperature control of the Pd/Ag separation stages is provided through metal fins which connect the outside and inside concentric cylinders which form the housing for the separation stages (see Figure 3). Band heaters located on the outside wall are able to transmit heat to the inside surface through these fins, thereby keeping the Pd/Ag tubes at a constant temperature.

Operating Conditions

Table 2 gives the projected steady-state operating conditions for the NGM. Only temperature is controlled in the module using three cartridge heaters located in the dissociator core and five band heaters located around the outside of the H₂ separator housing. Thermocouples located within the NGM are used to provide closed loop temperature feedback control. The central dissociator core is controlled at 1000K (1340F) and the Pd/Ag Separator tubes are controlled at 644K (700F). In addition to the heaters, a port for N₂ coolant gas is provided between the central dissociator core and the Pd/Ag separator stages in the event that the Pd/Ag tubes should start to overheat due to the heat generation in the central dissociator core.

Interfaces

The NGM has five mechanical interfaces and two electrical interfaces. The mechanical interfaces are the N_2H_4 liquid feed stream, the N_2 product stream, the H_2 by-product, the H_2 vented to vacuum and the N_2 coolant supply. The electrical connections include power to the heaters and the temperature sensor connectors. The NGM contains eight temperature sensors, two are used for control and six are used for fault detection and isolation. The NGM also has provisions for an additional 20 thermocouples for temperature profile mapping during development testing.

NITROGEN SUPPLY SUBSYSTEM DESIGN

The NSS has been designed as an integratable subsystem for a central ARS. Those components which would be redundant in another ARS subsystem have been eliminated. In addition, certain functions that would be performed by the NSS for the entire central ARS have been included.

The NSS consists of the N_2H_4 storage and feed mechanism, the NGM, the peripheral mechanical and electrical components required to control and monitor subsystem performance, and the advanced instrumentation required for the NSS to interface with other ARS subsystems and controls. The NSS design has been completed with the exception of the detailed instrumentation control software programs and the specific associated computer hardware. The instrumentation control concepts have been defined and are discussed in the following sections.

Design Specifications

The NSS has been designed to deliver N₂ at a rate of 3.63 kg/d (8.0 lb/day) at pressures less than or equal to 1725 kN/m² (250 psia). The detailed design specifications for the NSS are listed in Table 3.

Subsystem Operation

Figure 5 is a block diagram of the NSS. High pressure N_2 at approximately 2070 kN/m² (300 psia) is used to pressurize the N_2H_4 storage tanks. Hydrazine is forced from the tanks through a flow control which controls the N_2H_4 feed

TABLE 2 NGM NOMINAL OPERATING CONDITIONS

.

1000 (1340) Catalytic Dissociator Temperature, K (F) 644 (700) Pd/Ag Separator Temperature, K (F) N2H4 Feed Liquid N₂H Source N₂H₄ Flow Rate, kg/d (Lb/Day) cm³/min 4.15 (9.14) 2.9 Composition, Weight % 99.5 to 100 $^{N_{2}H_{4}}_{Water}$ 0 to 0.5 Temperature, $K_2(F)$ Pressure, kN/m^2 (Psia) 291 to 297 (65 to 75) 1932 (280) N₂ Product 3.63 (8.0) Flow Rate, kg/d (Lb/Day) dm /min (S1pm) 2.2 (2.2) Composition, Volume % 0.2 H₂ 1.9×10^{-3} NH₃ Water <0.1 Temperature, $K_2(F)$ Pressure, kN/m^2 (Psia) 644 (700) 1725 (250) H₂ By-Product Flow Rate, kg/d (Lb/Day) dm³/min (S1pm) 0.44(0.96)3.6 (3.6) Purity, Volume % 99.9999 to 100 Temperature, $K_2(F)$ Pressure, kN/m^2 (Psia) 644 (700) 173 (25) H₂ Vented Flow Rate, kg/d (Lb/Day) dm⁵ (S1pm) 0.08 (0.18) 0.68 (0.68) Temperature, K (F) Pressure, N/m² (mm Hg) 644 (700) 0 to 1334 (0 to 10)

Table 2-continued

Coolant Supply

Type			
		e, Ķ (F)	
Flow	Rate,	dm [°] /min	(Scfm)

Cabin Environment Data

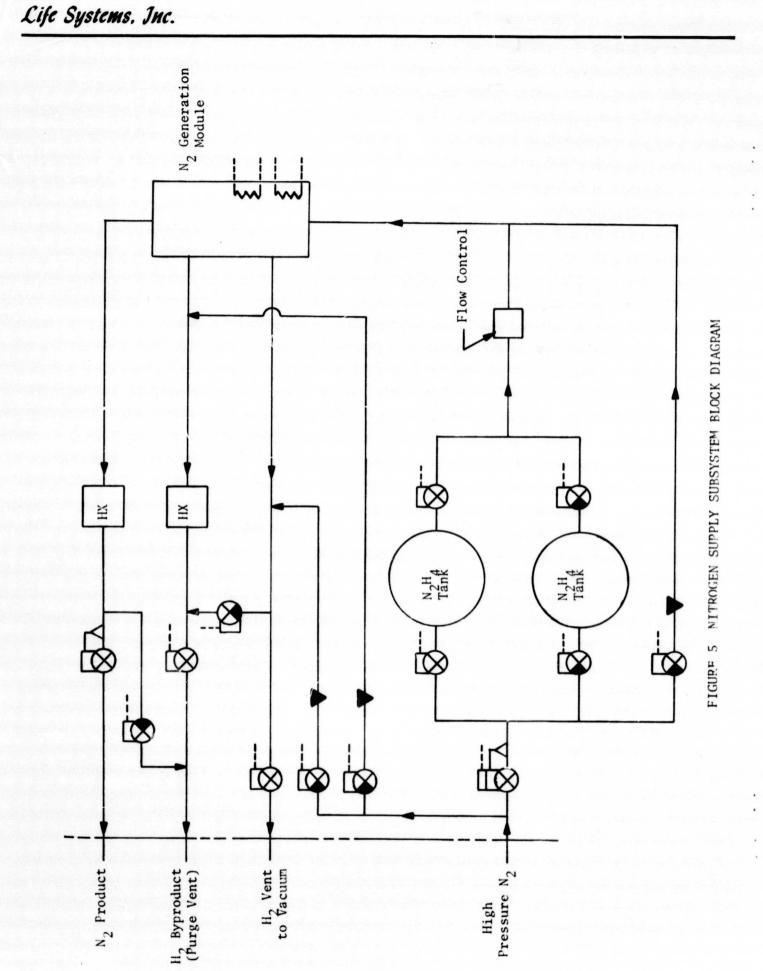
Operational Gravity, m/s² (G) Total Pressure, kN/m² (Psia) O₂ Partial Pressure, kN/m² (Psia) Diluent H₂ Concentration, Volume % NH₃ Concentration, Volume % Temperature, K (F) Ambient Air or N₂ 291 to 297 (65 to 75) 28 (1)

0 to 1.0 101.4 (14.7) 21.4 (3.1) N_2 0.2 5.0 x 10⁻⁵ 291 to 297 (65 to 75)

Life Systems, Inc.

TABLE 3 NITROGEN SUPPLY SUBSYSTEM DESIGN SPECIFICATIONS

Leakage Data


Air Leakage Rate, kg/d (Lb/Day)	4.74 (10.43)
N, Leakage Rate, kg/d (Lb/Day)	3.63 (8.00)
N ₂ Leakage Rate, kg/d (Lb/Day) O ₂ Leakage Rate, kg/d (Lb/Day)	1.10 (2.43)

Cabin Atmosphere Data

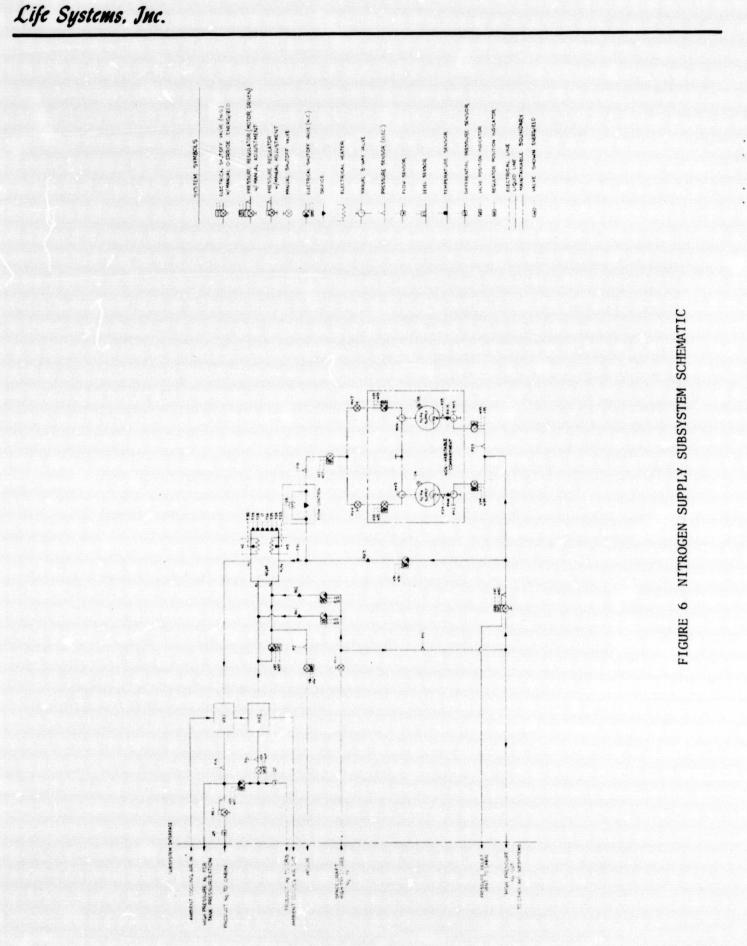
Operational Gravity, m/s ² (G) Total Pressure, kN/m ² (Psia) O ₂ Partial Pressure, kN/m ² (Psia) Diluent Volume	0 to 9.8 (0 to 1) 101.4 (14.7) 21.4 (3.1) N ₂
Initial, m^3 (Ft ³)	439 (15,500)
Growth, m ³ (Ft ³)	960 (33,900)

Ventilation Rate

Minimum, cm/s (Ft/Min)	7.6 (15)
Maximum, cm/s (Ft/Min)	20.3 (40)
H, Concentration, Volume %	0.2
NH ₃ Concentration, Volume %	5.0 x 10 ⁻³
Temperature, K (F)	291 to 297 (65 to 75)
Surface Temperature Guidelines, K (F)	<322 (120)
Acoustical Guidelines	NC-65

rate to the NGM by adjusting the feed pressure to the tanks. The N₂ and H₂ product streams are cooled in air heat exchangers prior to exiting the subsystem. The N₂ product pressure is controlled at 1725 kN/m² (250 psia) by a backpressure regulator. The H₂ vent-to-vacuum for the second and third H₂ separation stages in the NGM² is not cooled prior to exiting the subsystem. The absolute mass flow rate and heat capacity in the stream is very small and the gas stream will reach ambient temperature in just the length of tubing required to vent the stream from the subsystem.

Solenoid values are provided on the two N_2H_4 tanks to allow continuous operation of the NSS. One tank is always operating while the other tank remains in standby. As the first tank is emptied, the second tank is switched on line and the first tank is isolated for refilling.


Solenoid values and flow control orifices are used to distribute the high pressure N_2 for purging the three process gas streams. Solenoid values on the H_2 vent-to-vacuum and N_2 product streams allow all purge gas to be vented through the H_2 by-product stream which would be connected to the CRS. As part of an integrated ARS, the CRS would handle the purge vent for all ARS subsystems to prevent duplication of valuing required to exhaust purge gas to space vacuum. The H_2 vent-to-vacuum requirements would be handled similarly as part of the ARS so duplication is not required in the NSS.

The detailed schematic of the NSS is presented in Figure 6. The detailed schematic shows the specific values and sensors that will be used in the NSS. The N_2 feed to the supply tanks is controlled using a motor driven regulator (V30) and a closed loop feedback control from flow control Q8. The flow control monitors the pressure drop across a fixed orifice and automatically adjusts the feed tank pressure to give the desired flow rate as measured by differential pressure across the orifice.

The N_2H_4 storage tanks are shown as being located in a non-habitable compartment of the spacecraft. Hydrazine stored on-board a spacecraft would be fed to the NSS from outside the inhabited cabin atmosphere.

Manual valves (MV2 through MV6) are provided to refill the tanks since each supply tank was sized to only last approximately five days. Solenoid valves V32 through V35 determine which tank is on line. The control instrumentation automatically alerts the operator when a tank needs to be refilled and automatically switches in the reserve tank. Pressure sensors and orifices are used to measure the amount of N_2H_4 in the reserve tank prior to switching to the reserve tank. This prevents switching in an N_2H_4 tank which has not been filled. The concept works on the principal of timing how long it takes to pressurize the tanks with N_2 pressure through a fixed resistance flow orifice. A very short pressurization time (less than 0.1 seconds) would indicate that the tanks were relatively full whereas a longer pressurization period (up to ten seconds) would indicate a lower level of N_2H_4 in the tanks.

Redundant solenoid value V28 and manual values MV4 and MV7 are used as a safety precaution to insure that during a shutdown the N_2H_4 feed stream is

disconnected from the NGM both automatically and manually. Nitrogen purge is provided through solenoid valves V28, V29 and V31. Solenoid valve V31 also serves the dual purpose of prepressurizing the NGM prior to startup. Various pressure temperature and flow sensors are located throughout the subsubsystem for sequencing control and fault isolation and detection.

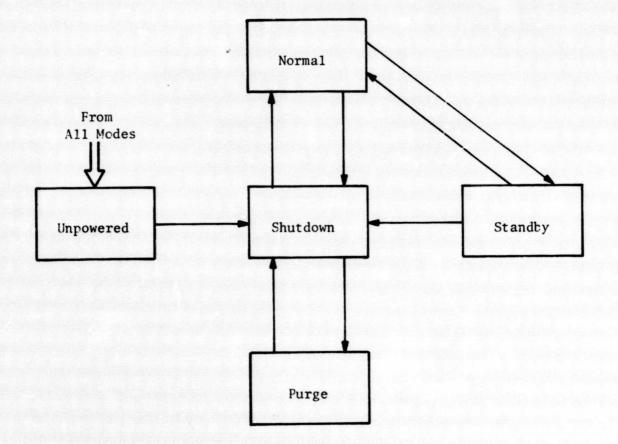
The N₂ generated by the NSS is vented to the cabin for cabin leakage makeup. The high pressure N₂ stream is also used for pressurization purposes in other ARS subsystems. The NSS serves as the interface with spacecraft high pressure N₂ that is used to purge other ARS subsystems. The spacecraft N₂ supply, therefore, interfaces with the NSS which interfaces with other subsystems requiring N₂ purge.

Control and Monitor Instrumentation

The NSS will have computer-based Control/Monitor Instrumentation (C/M I) that is integratable with a central ARS C/M I which controls and monitors all ARS subsystems.

The function of the C/M I is to provide:

- 1. Automatic mode control and mode transitions
- 2. Automatic shutdown provisions for self-protection
- 3. Provisions for monitoring critical parameters
- 4. An interface with TSA instrumentation


The NSS has five operating modes: Shutdown, Normal, Standby, Purge and Unpowered. The five modes and the allowable mode transitions are shown in Figure 7. There are eight allowable mode transitions that can be programed or commanded during NSS operation. In the event of a power failure, however, all modes can transition to the unpowered mode during which time all actuators and valves will go to the de-energized position. Upon repowering the NSS, all actuators will be put in the shutdown position.

Subsystem Controls

The preliminary control function of the NSS C/M I is to control mode transitions and steady-state operation. Table 4 lists the actuator conditions for the five steady-state modes.

In addition to steady-state mode control and transition sequences, the NSS C/M I contains two temperature controls and the N_2H_4 feed control. Temperature control is achieved using heaters H2 and H3 and sensors T23 and T30 respectively (see Figure 6). The N_2H_4 feed control uses flow sensor Q8 and adjusts the motor-driven pressure regulator (V30) which feeds high pressure N_2 to the N_2H_4 storage tanks to give the desired N_2H_4 flow rate. The feed control also determines which N_2H_4 tank will be used during operation and changes tanks as

Life Systems, Inc.

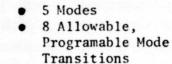


FIGURE 7 NSS OPERATING MODES AND ALLOWABLE TRANSITIONS

Life Systems, Inc.

	Shutdown	Norma1	Standby	Purge
V 24	0 ^(a)	0	0	0
V25	0	x ^(b)	x	0
V26	0	x	x	0
V27	0	x	x	0
V28	x	x	x	0
V29	x	x	x	0
V30	0	x	х	0
V31	Х	х	х	0
V32	0	x(c)	x(c)	0
V33	0	0 ^(c)	0 ^(c)	0
V34	0	x	х	0
V35	0	x	х	0
V37	0	x	х	0
Н2	0	x	Х	0
Н3	0	х	х	0

TABLE 4 ACTUATOR CONDITIONS FOR NSS OPERATING MODES

(a)

(a) 0 indicates actuator de-energized
(b) X indicates actuator energized
(c) Condition depends on which N₂H₄ tank is used

required to maintain a constant N_2H_4 flow to the NGM. The absolute pressure level of the NGM is set using a manual pressure regulator (RE1) and is not automatically adjusted during normal NSS operation.

Subsystem Monitoring

Various temperature flow and pressure sensors are located throughout the NSS to protect the subsystem by initiating a shutdown should a critical parameter exceed a preset level. The NSS sensor list is presented in Table 5. The list shows the monitoring range for each sensor and the shutdown point on critical sensors. The flow sensors for the NSS are used only for monitoring and have no shutdown capability as indicated in the table. Additional sensors which are not called out as part of the NSS are the combustible gas sensors located near the ARS subsystems and a combustible gas sensor located in the line that vents the N₂ and O₂ generated by the O₂ Generation Subsystem (OGS) from an ARS into the cabin. These two sensors protect against possible internal/external H₂ leakage and failure of the NGM to deliver high purity N₂ to the cabin. These sensors were not listed in Table 5 since they are considered part of another ARS subsystem but could shut down the NGM for internal-to-external H₂ leakage.

SUPPORTING TECHNOLOGY ACTIVITIES

Experimental activities were completed in two areas to support NSS technology development and, specifically, the NGM design:

- 1. Pd/Ag Separator performance characterization.
- 2. NH_z removal through staging.

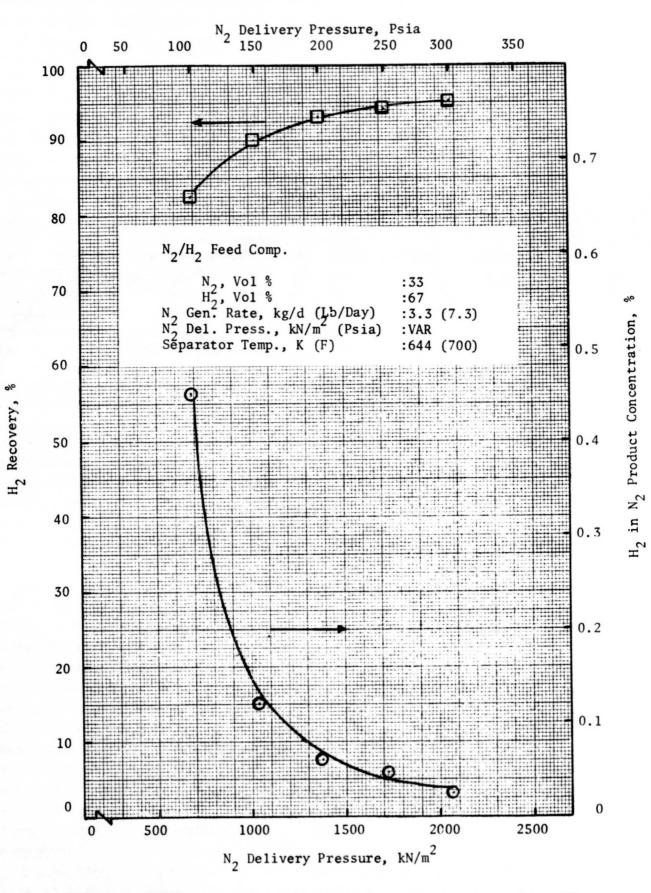
Palladium/Silver Separator Performance Characterization

The effect of N₂ generation rate and delivery pressure on Pd/Ag Separator performance was characterized over the operating ranges of 3.2 to 9.0 kg/d (7.0 to 19.8 lb/day) and 690 to 2,070 kN/m² (100 to 300 psia), respectively. The effect of N₂ generation rate on the H₂ recovery and the final H₂-in-N₂ product concentration is presented in Figure 8. The effect of N₂ delivery pressure on H₂ recovery and H₂-in-N₂ product concentration is presented in Figure 9. The baseline conditions for the testing are presented in Table 6.

For a fixed Pd/Ag Separator surface area, lower N₂ generation rates and higher N₂ delivery pressures improve separator performance over the operating range examined. Nitrogen delivery pressure has the greatest effect on separator performance for pressures below 1,035 kN/m² (150 psia). The benefits of increasing N₂ delivery pressure, however, decrease as the pressure level approaches 2,070 kN/m² (300 psia). For the N₂ generation rate range envisioned for future NSS application, a pressure range of 1,035 to 2,070 kN/m² (150 to 300 psia) is recommended.

TABLE 5 NSS SENSOR	LIST
--------------------	------

Туре	Sensor ^(a) Number	Range ^(b)	Shutdown ^(b) Point
Pressure	P15	0 to 2070 (0 to 300)	2070 (300)
Pressure	P16	0 to 345 (0 to 50)	345 (50)
Pressure	P17	0 to 173 (0 to 25)	173 (25)
Pressure	P18	0 to 2070 (0 to 300)	2070 (300)
Pressure	P19	0 to 3450 (0 to 500)	3450 (500)
Pressure	P23	0 to 2070 (0 to 300)	2070 (300)
Pressure	P24	0 to 2070 (0 to 300)	2070 (300)
Pressure	P25	0 to 2070 (0 to 300)	2070 (300)
Temperature	T23	294 to 700 (70 to 800)	N/A
Temperature	T24 to T26	294 to 700 (70 to 800)	700 (800)
Temperature	T27 to T29	294 to 1089 (70 to 1500)	1089 (1500)
Temperature	Т30	294 to 1089 (70 to 1500)	N/A
Temperature	Т31	294 to 311 (70 to 100)	100
Flow	Q5	0 to 5000	N/A
Flow	Q7	0 to 5000	N/A
Flow	Q8	0 to 5	N/A


(a)

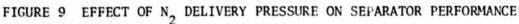

See Figure 6 for sensor location. Pressures given in kN/m^2 (Psia), temperatures in K (F) and flow rates in cc/min. (b)

FIGURE 8 EFFECT OF N2 GENERATION RATE AND PRESSURE ON SEPARATOR PERFORMANCE

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

.

TABLE 6 PALLADIUM/SILVER SEPARATOR BASELINE OPERATING CONDITIONS

N ₂ /H ₂ Feed	
Flow Rate, kg/d (Lb/Day)	3.3 ±0.1 (7.3 ±0.1)
Composition (by volume)	
N ₂ , %	33 ±0.5
H ₂ , %	67 ±0.5
Temperature, K (F)	294 ±2 (70 ±4)
N2 Product	
Temperature, K (F)	294 ±2 (70 ±4)
Pressure, kN/m ² (Psia)	1725 ±35 (250 ±5)
H ₂ Product	
Temperature, K (F)	294 ±2 (70 ±4)
Pressure, kN/m ² (Psia)	172 ±7 (25 ±1)
H ₂ Vent to Vacuum	
Temperature, K (F)	294 ±2 (70 ±4)
Pressure, kN/m ² (mm Hg)	0.3 ±0.3 (2 ±2)
Pd/Ag Diffusion Unit	
Temperature, K (F)	644 ±14 (700 ±25)

The data collected for the Pd/Ag separator was used to develop a mathematical model to size the Pd/Ag Separator stages in the NGM. The data presented, however, is conservative for the NGM application since it represents flow over the outside of the Pd/Ag tubes. The NGM has been designed with flow on the inside of the tubes thereby reducing the mass transfer limit in the gas phase which limits the H₂ separation process at low H₂-in-N₂ concentrations. The specific gain attributed to the flow on the inside of the Pd/Ag tubes, however, cannot be estimated from the data gathered to date and additional performance data for flow on the inside of the tubes is selected for the NGM design.

Ammonia Removal Test

An experiment was completed to demonstrate that low NH₃ concentrations in the product N₂ stream are possible using the staging concept. Mixtures of N₂, H₂ and NH₃ were fed into a temperature controlled packed bed reactor. The reactor was a 25.4 cm (10 in) long, 1.3 cm (0.5 in) OD stainless steel tube packed with approximately 24 cm (1.5 in⁵) of 12 to 20 mesh NH₃ dissociation catalyst.

The objective of the experiment was to demonstrate the highest NH_3 inlet concentration allowable and reactor temperature required to reduce the NH_3 concentration to less than or equal to 50 ppm. A gas chromatograph was used for quantitative analyses above 0.1% NH_3 . The error in the gas chromatographic technique used did not allow accurate data at the lower NH_3 concentrations. The determination of less than or equal to 50 ppm was accomplished by smelling the N_2 product gas exiting the reactor. The odor threshold of NH_3 is 50 ppm and therefore this technique provided a simple and effective method of analysis.

The results of the NH₃ removal experiment are presented in Table 7. An NH₃ concentration of 1.03% in the feed stream is reduced to less than 50 ppm at temperatures greater than or equal to 777K (940F). The actual inlet NH₃ concentration to the final NGM NH₃ dissociation stages is only 0.09%. The NGM should therefore meet its design requirement.

CONCLUS IONS

The following conc ions were reached:

- 1. The intension of multiple H_2 separation and N_2H_4 and NH_3 dissociation stages into an NGM is feasible. The design completed successfully integrates seven dissociation/separation stages into a single package to effectively use the heat generated in the N_2H_4 dissociation process to heat the other stages.
- 2. An NSS can be designed and integrated into a central ARS. The NSS design completed is fully integratable with an ARS and has been sized to deliver 3.63 kg/d (8.0 lb/day) of N₂ at greater than or equal to 1,725 kN/m² (250 psia). This N₂ generation rate corresponds to a six-man spacecraft application.

TABLE 7 AMMONIA REMOVAL TEST RESULTS

Temperature,	Inlet Con	c, %	Outlet NH ₇
K (F)	NH ₇	H ₂	Conc, % S
		2	
1089 (1500)	4.32	0	0.88
1089 (1500)	3.46	20	0.65
		2	0.005
1089 (1500)	0.76	0	<0.005
1080 (1500)	1 07	0	<0.005
1089 (1500)	1.03	0	<0.005
1005 (1350)	1.03	0	<0.005
1005 (1550)	1.00	0	0.000
889 (1140)	1.03	0	<0.005
777 (940)	1.03	0	<0.005
683 (770)	1.03	0	0.22
	K (F) 1089 (1500) 1089 (1500) 1089 (1500) 1089 (1500) 1005 (1350) 889 (1140) 777 (940)	KNH3 $1089 (1500)$ 4.32 $1089 (1500)$ 3.46 $1089 (1500)$ 0.76 $1089 (1500)$ 1.03 $1005 (1350)$ 1.03 $889 (1140)$ 1.03 $777 (940)$ 1.03	K (F)NH3H2 $1089 (1500)$ 4.32 0 $1089 (1500)$ 3.46 20 $1089 (1500)$ 0.76 0 $1089 (1500)$ 1.03 0 $1005 (1350)$ 1.03 0 $889 (1140)$ 1.03 0 $777 (940)$ 1.03 0

3. The NGM staging technique is an effective method of delivering high purity N₂ for spacecraft leakage makeup. Data gathered on a laboratory NH₃ dissociator verified that low NH₃ concentrations (less than 50 ppm) are attainable using the NGM.

RECOMMENDATIONS

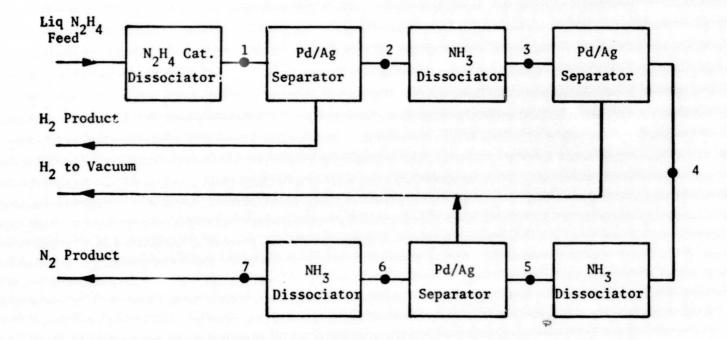
The following recommendations are a direct result of the work completed:

- 1. The NGM should be fabricated and tested to determine its performance as a function of N_2 generation rate and delivery pressure.
- 2. The NSS should be fabricated and integrated into a central ARS for testing.
- 3. The NGM separation stages should be tested and the design upgraded based on these test results to reduce the number of Pd/Ag tubes required. The present design data is conservative and does not allow for improvements in separator performance projected for the NGM tube configuration.

REFERENCES

- Marshall, R. D., Carlson, J. N., Powell, J. D. and Kacholia, K. K., "Spacecraft Nitrogen Generation," Final Report, Contract NAS2-7057 NASA CR-137576, Life Systems, Inc., Cleveland, OH, December, 1974.
- Marshall, R. D., Wynveen, R. A. and Carlson, J. N., "Evaluation of an Electrochemical N₂/H₂ Gas Separator," Final Report, Contract NAS2-7057 NASA CR-114580, Life Systems, Inc., Cleveland, OH, March, 1973.
- Marshall, R. D., "Spacecraft Nitrogen Resupply Technology: Nitrogen/ Hydrogen Separation," Paper 74-ENAs-9, presented at the Intersociety Conference on Environmental Systems, Seattle, WA, July 29-August 1, 1974.
- 4. Audrietti, L. F. and Ogg, B., "The Chemistry of Hydrazine," J. Wiley and Sons, Inc., New York, NY, 1951.
- Marshall, R. D. and Powell, J. D., "Evaluation of a Spacecraft Nitrogen Generator," Annual Status Report, Contract NAS2-8732, NASA CR-137930, Life Systems, Inc., Cleveland, OH, September, 1976.
- 6. Smetana, Frederick O., Fairchild II, Howard H. and Martin, Glenn L., "Equilibrium Concentrations of N₂H₄ and its Decomposition Products at Elevated Temperatures and Pressures," Department of Mechanical and Aerospace Engineering, School of Engineering, North Carolina State University, Raleigh, NC.

APPENDIX 1

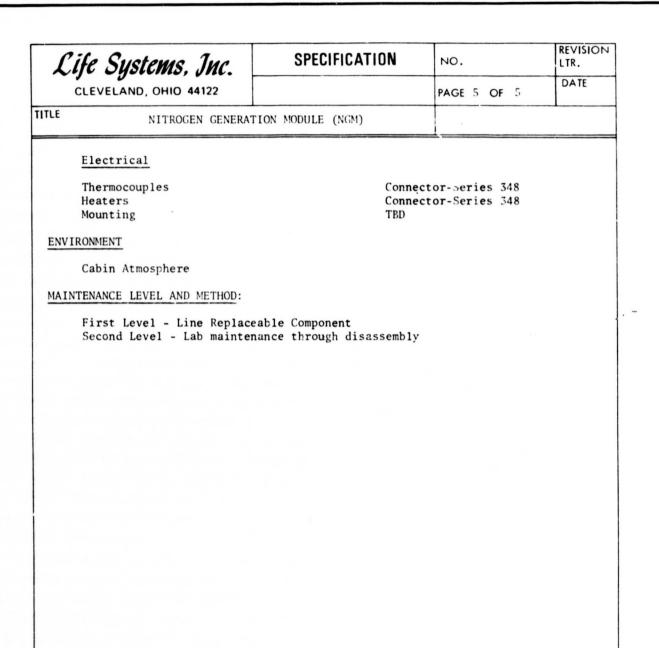

4

NGM DESIGN SPECIFICATION

ſ	ife Systems, Inc.	SPECIFICATION	NO.	REVISION LTR.	
	CLEVELAND, OHIO 44122		PAGE 1 OF	DATE	
ITLE	NITROGEN GENERATION MO	DULE (NGM)			
FUNCT	LION				
The fand h	function of the Nitrogen (N ₂ by-product hydrogen (H ₂) fro) Generation Module (1 m a liquid hydrazine	NGM) is to generate (N_2H_4) feed stream.	^N 2	
DESCI	RIPTION				
separ showi separ since allow	NGM consists of the catalyti rator stages required to gen ing the staging concept is p rator stages are packaged as e both operate at elevated t ws the heat generated during temperature of the entire NG	erate high purity N ₂ resented in Figure Al a single unit to min emperatures. The sin the dissociation of	and H ₂ . A block dia -1. The dissociator imize insulation rec gle package concept	agram r and quirements also	
DESI	GN DATA				
	Design Specifications				
	N ₂ H ₂ Feed Rate, kg/d (Lb/Day) N ₂ Generation Rate, kg/d (Lb/Day) H ₂ Generation Rate, kg/d (Lb/Day) H ₂ Product Composition, Volume %		4.15 (9.14) 3.63 (8.00) 0.44 (0.96)		
	H ₂ NH ₃ Water		$\frac{<0.2}{<5 \times 10^{-5}}$		
	H ₂ By-product Purity, Volum Surface Temperature Guideli	ne% >99 nes, K (F) <32	>99.9 <322 (120)		
	Cabin Environment Data				
	Operational Gravity, ₂ G Total Pressure, kN/m [°] (Psia) O ₂ Partial Pressure, kN/m [°] (Psia)		0 to 1.0 101.4 (14.7) 21.4 (3.1)		
	Díluent H, Concentration, Volume % NH, Concentration, Volume % Temperature, K (F)		N_{202} 5.0×10^{-5} 291 to 297 (65 to 75)		
	Nominal Operating Condition	15			
	Catalytic Dissociator Tempe Pd/Ag Separator Temperature N ₂ H ₄ Feed		0 (1340) (700)		
	Source N ₂ H ₄ Flow Rate, kg/d		uid N ₂ H ₄ 5 (9.14)		

1

٠


Stream	% N ₂	% H ₂	% NH 3	Eff. %	Temp, K (F)
1	32.8	64.0	3.2	93	1000 (1340)
2	77.3	15.1	7.6	90	644 (700)
3	75.8	22.8	1.4	80	811 (1000)
4	96.7	1.5	1.8	95	644 (700)
5	95.9	4.0	0.09	95	811 (1000)
6	99.8	0.08	0.09	98	644 (700)
7	99.78	0.2	19 ppm	98	811 (T000)

1

FIGURE A1-1 NGM STAGING CONCEPT BLOCK DIAGRAM

ſil	e Systems, Inc.	SPECIFICATION	NO.	LTR.
	EVELAND, OHIO 44122		PAGE 3 OF 5	DATE
TITLE	NITROGEN GENERATION M			
	NITROGEN GENERATION P			
	Composition, Weight %			
	N-H-	99.5	to 100	
	N ₂ H ₄ Water	0 to		
	Temperature, K ₂ (F) Pressure, kN/m ² (Psia		o 297 (65 to 75) (280)	
N	Product			
	Flow Rate, kg/d (Lb/D	ay) 3.63	(8.0)	
	Flow Rate, kg/d (Lb/D dm ³ /min (S	1pm) ^(a) 2.2 (
	Composition, Volume %			
	H ₂	0.2		
	NH ₃	1.9 x	(10^{-3})	
	Water	<0.1		
	Temperature, $K_2(F)$	644 ((700)	
	Pressure, kN/m ² (Psia		(250)	
ł	i ₂ By-Product			
	Flow Rate, kg/d (Lb/E	(a) 0.44	(0.96)	
	Flow Rate, kg/d (Lb/I dm /min (S			
669-01 - A	Purity, Volume %		999 to 100	
Sector and	Temperature, $K_2(F)$	644 (
n natro	Pressure, kN/m ² (Psia	.) 173 ((25)	
H	¹ ₂ Vented			
sector de la	Flow Rate, kg/d (Lb/I	ay) 0.08	(0.18)	
	Flow Rate, kg/d (Lb/f dm (S1pm)	0.68	(0.68)	
	Temperature, K (F) Pressure, N/m ² (mm Hg	644 ((700)	
	Pressure, N/m (mm Hg) 0 to	1334 (0 to 10)	
	Coolant Supply			
	Туре	Ambie	ent Air or N ₂	
	Tampanatuma V (E)	201 4	to 297 (65 to 75)	
	Flow Rate, dm /min (S	(a) 28 (1	1)	
(a)	At standard conditions of	294K (70F) and one atmos	sphere.	

Lit	e Systems, Inc.	SPECIFICATIO	N NO.	REVISION	
	EVELAND, OHIO 44122		PAGE 4 OF 5	DATE	
ITLE	NITROGEN GENERAT	ION MODULE (NGM)			
0	The Apple of the A	· · · · · · · · · · · · · · · · · · ·			
	Performance Characteristic	s			
	NH ₂ Conversion Efficiency,	8	99.996		
	H, Recovery, %		84 _5 _5		
1	NH3 Generated, kg/d (Lb/Da	y)	$4 \times 10^{-5} (9 \times 10^{-5})$		
	Water Generated, kg/d (Lb/		0.02 to 0.04 (0.04 t	o 0.09)	
	Power Required, W (Average)		138		
	Heat Rejected, J/s (BTU/Hr Reliability Data)	138 (472)		
	Goal		TBD		
	MTBF, Hr		TBD		
	Mission Length, Day		180		
	Physical Characteristics				
	Weight, kg (Lb)		61 (135)		
	Volume, m ³ (Ft ³)		0.022 (0.79)		
	Basic Dimensions, cm (In)		26.2 Dia x 41.7 (10.3 Dia x 16.4)		
	Material Characteristics				
	A. Nonmetallic		Graphite (gaskets) M	lin-K	
		(insulation)			
	B. Metallic		SS310, SS316, SS304 Inconel X-750, Nickel 200		
	Electrical Characteristics				
	Supply Voltage to Heaters,		120, 240		
	supply follage to nearers,	Hz	60		
	Supply Power to Heaters, W		400, 1200, 1600		
INTER	FACES				
4	Mechanical				
1 1	N ₂ Product		1/4 In Tube		
and and	N ₂ H, Feed		1/4 In Tube		
	H ₂ ² By-Product		1/4 In Tube		
	H ₂ ² to Vacuum		1/2 In Tube		
	Cooling Air		1/4 In Tube		
1000	Cabin Air		Ambient		
Search 1					
C. S. Cale					

