3,611 research outputs found

    Three-dimensional imaging of direct-written photonic structures

    Full text link
    Third harmonic generation microscopy has been used to analyze the morphology of photonic structures created using the femtosecond laser direct-write technique. Three dimensional waveguide arrays and waveguide-Bragg gratings written in fused-silica and doped phosphate glass were investigated. A sensorless adaptive optical system was used to correct the optical aberrations occurring in the sample and microscope system, which had a lateral resolution of less than 500 nm. This non-destructive testing method creates volume reconstructions of photonic devices and reveals details invisible to other linear microscopy and index profilometry techniques.Comment: 8 pages, 3 color figures, 2 hyper-linked animation

    A Directly-Written Monolithic Waveguide-Laser Incorporating a DFB Waveguide-Bragg Grating

    Full text link
    We report the fabrication and performance of the first C-band directly-written monolithic waveguide-laser. The waveguide-laser device was created in an Erbium and Ytterbium doped phosphate glass host and consisted of an optical waveguide that included a distributed feedback Bragg grating structure. The femtosecond laser direct-write technique was used to create both the waveguide and the waveguide-Bragg grating simultaneously and in a single processing step. The waveguide-laser was optically pumped at approximately 980 nm and lased at 1537nm with a bandwidth of less than 4 pm.Comment: 6 pages, 13 references, 4 figure

    A 100 mW monolithic Yb waveguide laser fabricated using the femtosecond laser direct-write technique

    Full text link
    A femtosecond laser-written monolithic waveguide laser (WGL) oscillator based on a distributed feedback (DFB) architecture and fabricated in ytterbium doped phosphate glass is reported. The device lased at 1033 nm with an output power of 102 mW and a bandwidth less than 2 pm when bidirectionally pumped at 976 nm. The WGL device was stable and operated for 50 hours without degradation. This demonstration of a high performance WGL opens the possibility for creating a variety of narrow-linewidth laser designs in bulk glasses.Comment: 5 pages, 3 figures, submitted journal manuscrip

    The Structure of High Strehl Ratio Point-Spread Functions

    Full text link
    We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive o to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error, over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric perturbation of the perfect PSF, arising from the term that is first order in the residual phase error. There are two symmetric second degree terms. One is negative at the center, and, like the first order term, is modulated by the perfect image's field strength -- it reduces to the Marechal approximation at the center of the PSF. The other is non-negative everywhere, zero at the image center, and can be responsible for an extended halo -- which limits the dynamic range of faint companion detection in the darkest portions of the image. In regimes where one or the other term dominates the speckles in an image, the symmetry of the dominant term can be exploited to reduce the effect of those speckles, potentially by an order of magnitude or more. We demonstrate the effects of both secondary obscuration and pupil apodization on the structure of residual speckles, and discuss how these symmetries can be exploited by appropriate telescope and instrument design, observing strategies, and filter bandwidths to improve the dynamic range of high dynamic range AO and space-based observations. Finally, we show that our analysis is relevant to high dynamic range coronagraphy.Comment: Accepted for publication in ApJ; 20 pages, 4 figure

    Isolation of microsatellite loci in the Capricorn silvereye, Zosterops lateralis chlorocephalus (Aves : Zosteropidae)

    Get PDF
    The Capricorn silvereye (Zosterops lateralis chlorocephalus ) is ideally suited to investigating the genetic basis of body size evolution. We have isolated and characterized a set of microsatellite markers for this species. Seven out of 11 loci were polymorphic. The number of alleles detected ranged from two to five and observed heterozygosities between 0.12 and 0.67. One locus, ZL49, was found to be sex-linked. This moderate level of diversity is consistent with that expected in an isolated, island population

    Point-by-point inscription of apodized fiber Bragg gratings

    Full text link
    We demonstrate apodized fiber Bragg gratings inscribed with a point-by-point technique. We tailor the grating phase and coupling amplitude through precise control over the longitudinal and transverse position of each laser-inscribed modification. This method of apodization is facilitated by the highly-localized, high-contrast modifications generated by focussed IR femtosecond laser inscription. Our technique provides a simple method for the design and implementation of point-by-point fiber Bragg gratings with complex apodization profiles.Comment: 6 pages, 4 figures, article in revie

    Performance, Politics and Media: How the 2010 British General Election leadership debates generated ‘talk’ amongst the electorate.

    Get PDF
    During the British General Election 2010 a major innovation was introduced in part to improve engagement: a series of three live televised leadership debates took place where the leader of each of the three main parties, Labour, Liberal Democrat and Conservative, answered questions posed by members of the public and subsequently debated issues pertinent to the questions. In this study we consider these potentially ground breaking debates as the kind of event that was likely to generate discussion. We investigate various aspects of the ‘talk’ that emerged as a result of watching the debates. As an exploratory study concerned with situated accounts of the participants experiences we take an interpretive perspective. In this paper we outline the meta-narratives (of talk) associated with the viewing of the leadership debates that were identified, concluding our analysis by suggesting that putting a live debate on television and promoting and positioning it as a major innovation is likely to mean that is how the audience will make sense of it – as a media event

    Active Temporal Multiplexing of Photons

    Get PDF
    Photonic qubits constitute a leading platform to disruptive quantum technologies due to their unique low-noise properties. The cost of the photonic approach is the non-deterministic nature of many of the processes, including single-photon generation, which arises from parametric sources and negligible interaction between photons. Active temporal multiplexing - repeating a generation process in time and rerouting to single modes using an optical switching network - is a promising approach to overcome this challenge and will likely be essential for large-scale applications with greatly reduced resource complexity and system sizes. Requirements include the precise synchronization of a system of low-loss switches, delay lines, fast photon detectors, and feed-forward. Here we demonstrate temporal multiplexing of 8 'bins' from a double-passed heralded photon source and observe an increase in the heralding and heralded photon rates. This system points the way to harnessing temporal multiplexing in quantum technologies, from single-photon sources to large-scale computation.Comment: Minor revision

    An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images

    Full text link
    Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade, and are revolutionizing the kinds of science possible with 4-5m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a "waffle mode" wave front error (which is not sensed by a Fried geometry Shack-Hartmann wave front sensor) affects the AO point-spread function (PSF). We model details of AEOS AO to simulate a PSF which matches the actual AO PSF in the I-band, and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass.Comment: 15 pages, 11 figures, 1 table; to appear in PASP, August 200

    An integrated cryogenic optical modulator

    Full text link
    Integrated electrical and photonic circuits (PIC) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing, and cryogenic computing technologies. Optical interconnects offer better performance and thermal insulation than electrical wires and are imperative for true quantum communication. Silicon PICs have matured for room temperature applications but their cryogenic performance is limited by the absence of efficient low temperature electro-optic (EO) modulation. While detectors and lasers perform better at low temperature, cryogenic optical switching remains an unsolved challenge. Here we demonstrate EO switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3)-based devices. We report the nonlinear optical (NLO) properties of BaTiO3 in a temperature range which has previously not been explored, showing an effective Pockels coefficient of 200 pm/V at 4 K. We demonstrate the largest EO bandwidth (30 GHz) of any cryogenic switch to date, ultra-low-power tuning which is 10^9 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs. It removes major roadblocks for the realisation of novel cryogenic-compatible systems in the field of quantum computing and supercomputing, and for interfacing those systems with the real world at room-temperature
    • …
    corecore