1,872 research outputs found

    The gold standard: accurate stellar and planetary parameters for eight Kepler M dwarf systems enabled by parallaxes

    Get PDF
    We report parallaxes and proper motions from the Hawaii Infrared Parallax Program for eight nearby M dwarf stars with transiting exoplanets discovered by Kepler. We combine our directly measured distances with mass-luminosity and radius–luminosity relationships to significantly improve constraints on the host stars’ properties. Our astrometry enables the identification of wide stellar companions to the planet hosts. Within our limited sample, all the multi-transiting planet hosts (three of three) appear to be single stars, while nearly all (four of five) of the systems with a single detected planet have wide stellar companions. By applying strict priors on average stellar density from our updated radius and mass in our transit fitting analysis, we measure the eccentricity probability distributions for each transiting planet. Planets in single-star systems tend to have smaller eccentricities than those in binaries, although this difference is not significant in our small sample. In the case of Kepler-42bcd, where the eccentricities are known to be ≃0, we demonstrate that such systems can serve as powerful tests of M dwarf evolutionary models by working in L⋆ − ρ⋆ space. The transit-fit density for Kepler- 42bcd is inconsistent with model predictions at 2.1σ (22%), but matches more empirical estimates at 0.2σ (2%), consistent with earlier results showing model radii of M dwarfs are underinflated. Gaia will provide high-precision parallaxes for the entire Kepler M dwarf sample, and TESS will identify more planets transiting nearby, late-type stars, enabling significant improvements in our understanding of the eccentricity distribution of small planets and the parameters of late-type dwarfs.Support for Program number HST-HF2-51364.001-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. This paper includes data collected by the Kepler mission. Funding for the Kepler mission is provided by the NASA Science Mission directorate. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this paper. URL: http://www.tacc.utexas.edu. (HST-HF2-51364.001-A - NASA through Space Telescope Science Institute; NAS5-26555 - NASA; NNX09AF08G - NASA Office of Space Science; NASA Science Mission directorate

    Decoding Corticotropin-Releasing Factor Receptor Type 1 Crystal Structures.

    Get PDF
    The structural analysis of class B G protein-coupled receptors (GPCR), cell surface proteins responding to peptide hormones, has until recently been restricted to the extracellular domain (ECD). Corticotropin-releasing factor receptor type 1 (CRF1R) is a class B receptor mediating stress response and also considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of human CRF1R in complex with the small-molecule antagonist CP-376395 in a hexagonal setting with translational non-crystallographic symmetry. Molecular dynamics and metadynamics simulations on this novel structure and the existing TMD structure for CRF1R provides insight as to how the small molecule ligand gains access to the induced-fit allosteric binding site with implications for the observed selectivity against CRF2R. Furthermore, molecular dynamics simulations performed using a full-length receptor model point to key interactions between the ECD and extracellular loop 3 of the TMD providing insight into the full inactive state of multidomain class B GPCRs.This is the accepted manuscript. It is currently embargoed pending publication

    Characterization of an electron conduit between bacteria and the extracellular environment

    Get PDF
    A number of species of Gram-negative bacteria can use insoluble minerals of Fe(III) and Mn(IV) as extracellular respiratory electron acceptors. In some species of Shewanella, deca-heme electron transfer proteins lie at the extracellular face of the outer membrane (OM), where they can interact with insoluble substrates. To reduce extracellular substrates, these redox proteins must be charged by the inner membrane/periplasmic electron transfer system. Here, we present a spectro-potentiometric characterization of a trans-OM icosa-heme complex, MtrCAB, and demonstrate its capacity to move electrons across a lipid bilayer after incorporation into proteoliposomes. We also show that a stable MtrAB subcomplex can assemble in the absence of MtrC; an MtrBC subcomplex is not assembled in the absence of MtrA; and MtrA is only associated to the membrane in cells when MtrB is present. We propose a model for the modular organization of the MtrCAB complex in which MtrC is an extracellular element that mediates electron transfer to extracellular substrates and MtrB is a trans-OM spanning ß-barrel protein that serves as a sheath, within which MtrA and MtrC exchange electrons. We have identified the MtrAB module in a range of bacterial phyla, suggesting that it is widely used in electron exchange with the extracellular environment

    Development and Validation of the Combined Action Observation and Motor Imagery Ability Questionnaire

    Get PDF
    Combined use of action observation and motor imagery (AOMI) is an increasingly popular motor-simulation intervention, which involves observing movements on video while simultaneously imagining the feeling of movement execution. Measuring and reporting participant imagery-ability characteristics are essential in motor-simulation research, but no measure of AOMI ability currently exists. Accordingly, the AOMI Ability Questionnaire (AOMI-AQ) was developed to address this gap in the literature. In Study 1, two hundred eleven participants completed the AOMI-AQ and the kinesthetic imagery subscales of the Movement Imagery Questionnaire-3 and Vividness of Motor Imagery Questionnaire-2. Following exploratory factor analysis, an 8-item AOMI-AQ was found to correlate positively with existing motor-imagery measures. In Study 2, one hundred seventy-four participants completed the AOMI-AQ for a second time after a period of 7-10 days. Results indicate a good test-retest reliability for the AOMI-AQ. The new AOMI-AQ measure provides a valid and reliable tool for researchers and practitioners wishing to assess AOMI ability

    Use of Surface Motion Characteristics Determined by InSAR to Assess Peatland Condition

    Get PDF
    Peatland surface motion is a key property of peatland that relates to condition. However, field‐based techniques to measure surface motion are not cost‐effective over large areas and long time periods. An alternative method that can quantify peatland surface motion over large areas is interferometric synthetic aperture radar. Although field validation of the accuracy of this method is difficult, the value of InSAR as a means of quantifying peat condition can be tested. To achieve this the characteristics of InSAR time series measured over an18‐month period at 22 peatland sites in the Flow Country northern Scotland were compared to site condition assessment based on plant functional type and site management history. Sites in good condition dominated by Sphagnum display long‐term stability or growth and a seasonal cycle with maximum uplift and subsidence in Aug‐Nov and April‐June respectively. Drier and partially drained sites dominated by shrubs display long‐term subsidence with maximum uplift and subsidence in July‐Oct and Feb‐June respectively. Heavily degraded sites with large bare peat extent display subsidence with no distinct seasonal oscillations. Seasonal oscillation in surface motion at sites with a dominant non‐vascular plant community is interpreted as resulting from changes in seasonal evaporative demand. On sites with extensive vascular plants cover and falling water table, surface oscillations are interpreted as representing sustained drawdown during the growing season and subsequent recharge in late winter. This study highlights the potential to use InSAR to characterize peatland condition and provide a new view of the surface dynamics of peatland landscapes

    Characterization of Pfiesteria Ichthyocidal Activity

    Get PDF
    Letter to the Editor regarding article: Drgon, T., et al. 2005. Characterization of ichthyocidal activity of Pfiesteria piscicida: Dependence on the dinospore cell density. Appl. Environ. Microbiol. 71:519–52

    Low bandgap mid-infrared thermophotovoltaic arrays based on InAs

    Get PDF
    We demonstrate the first low bandgap thermophotovoltaic (TPV) arrays capable of operating with heat sources at temperatures as low as 345 °C, which is the lowest ever reported. The individual array elements are based on narrow band gap InAs/InAs0.61Sb0.13P0.26 photodiode structures. External power conversion efficiency was measured to be ∌3% from a single element at room temperature, using a black body at 950 °C. Both 25-element and 65-element arrays were fabricated and exhibited a TPV response at different source temperatures in the range 345–950 °C suitable for electricity generation from waste heat and other applications

    Revealing the Dusty Warm Absorber in MCG--6-30-15 with the Chandra HETG

    Full text link
    We present detailed evidence for a warm absorber in the Seyfert 1 galaxy MCG--6-30-15 and dispute earlier claims for relativistic O line emission. The HETG spectra show numerous narrow, unresolved (FWHM < 200 km/s) absorption lines from a wide range of ionization states of N, O, Mg, Ne, Si, S, Ar, and Fe. The O VII edge and 1s^2--1snp resonance line series to n=9 are clearly detected at rest in the AGN frame. We attribute previous reports of an apparently highly redshifted O VII edge to the 1s^2--1snp (n > 5) O VII resonance lines, and a neutral Fe L absorption complex. The shape of the Fe L feature is nearly identical to that seen in the spectra of several X-ray binaries, and in laboratory data. The implied dust column density agrees with that obtained from reddening studies, and gives the first direct X-ray evidence for dust embedded in a warm absorber. The O VIII resonance lines and weak edge are also detected, and the spectral rollover below 2 keV is explained by the superposition of numerous absorption lines and edges. We identify, for the first time, a KLL resonance in the O VI photoabsorption cross section, giving a measure of the O VI column density. The O VII (f) emission detected at the systemic velocity implies a covering fraction of ~5% (depending on the observed vs. time-averaged ionizing flux). Our observations show that a dusty warm absorber model is not only adequate to explain all the spectral features > 0.48 keV (< 26 \AA) the data REQUIRE it. This contradicts the interpretation of Branduardi-Raymont et al. (2001) that this spectral region is dominated by highly relativistic line emission from the vicinity of the black hole.Comment: 4.5 pages, 1 color figure, accepted (April 2001) for publication in ApJL, not many changes from the initial submission - updated/added some measuements for the O VII resonance series, and added a discussion about FeO2 grain

    Survey for Transiting Extrasolar Planets in Stellar Systems. II. Spectrophotometry and Metallicities of Open Clusters

    Full text link
    We present metallicity estimates for seven open clusters based on spectrophotometric indices from moderate-resolution spectroscopy. Observations of field giants of known metallicity provide a correlation between the spectroscopic indices and the metallicity of open cluster giants. We use \chi^2 analysis to fit the relation of spectrophotometric indices to metallicity in field giants. The resulting function allows an estimate of the target-cluster giants' metallicities with an error in the method of \pm0.08 dex. We derive the following metallicities for the seven open clusters: NGC 1245, [m/H]=-0.14\pm0.04; NGC 2099, [m/H]=+0.05\pm0.05; NGC 2324, [m/H]=-0.06\pm0.04; NGC 2539, [m/H]=-0.04\pm0.03; NGC 2682 (M67), [m/H]=-0.05\pm0.02; NGC 6705, [m/H]=+0.14\pm0.08; NGC 6819, [m/H]=-0.07\pm0.12. These metallicity estimates will be useful in planning future extra-solar planet transit searches since planets may form more readily in metal-rich environments.Comment: 38 pages, including 12 figures. Accepted for publication in A
    • 

    corecore