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Abstract Peatland surface motion is a key property of peatland that relates to condition. However,
field‐based techniques to measure surface motion are not cost‐effective over large areas and long time
periods. An alternative method that can quantify peatland surface motion over large areas is interferometric
synthetic aperture radar. Although field validation of the accuracy of this method is difficult, the value of
interferometric synthetic aperture radar (InSAR) as a means of quantifying peat condition can be tested.
To achieve this, the characteristics of InSAR time series measured over an18‐month period at 22 peatland sites
in the Flow Country northern Scotland were compared to site condition assessment based on plant functional
type and site management history. Sites in good condition dominated by Sphagnum display long‐term
stability or growth and a seasonal cycle with maximum uplift and subsidence in August–November
and April–June, respectively. Drier and partially drained sites dominated by shrubs display long‐term
subsidence with maximum uplift and subsidence in July–October and February–June, respectively. Heavily
degraded sites with large bare peat extent display subsidence with no distinct seasonal oscillations. Seasonal
oscillation in surface motion at sites with a dominant nonvascular plant community is interpreted as
resulting from changes in seasonal evaporative demand. On sites with extensive vascular plants cover and
falling water table, surface oscillations are interpreted as representing sustained drawdown during the growing
season and subsequent recharge in late winter. This study highlights the potential to use InSAR to characterize
peatland condition and provide a new view of the surface dynamics of peatland landscapes.

Plain Language Summary Peatlands contain one third of all soil carbon despite covering only
3% of the Earth's land area. Peatlands in good condition cool climate through carbon sequestration and
provide a range of other benefits such as water regulation and support of biodiversity. All these are
compromised by peatland degradation, with severe costs to society. Given the global extent and remoteness
of many peatlands, tools are needed to reliably assess peatland condition and inform future management.
This research assesses the potential to use remote sensing of surface motion to measure peatland condition.
The surface of peatland is known to move in response to change in water or gas in the peat but is notoriously
difficult to measure. Our research provides the first indication that surface motion measured by satellite
radar can differentiate peatland condition categories effectively. Wet, mossy peatland in good condition
displays a strong and distinctive seasonal cycle falling mid summer and rising in midwinter. Drier
shrubby peatland has a completely different pattern of motion, with the surface falling in late summer and
rising to a peak in late spring. This evidence opens new possibilities of using satellite radar to provide a
global view of peatland. With further development, this technique could enable rapid and continuous
assessment of the condition of peatland and therefore inform management decisions.

1. Introduction

Peatland surfaces are particularly dynamic (Ingram, 1983) and move in response to changes in the mass of
water, gas, and organic matter stored within the peat body. Changes in this mass are caused by both seasonal
and long‐term environmental change in evapotranspiration, rainfall, atmospheric pressure, drainage, tem-
perature, decay, and loading (Fritz et al., 2008; Kennedy & Price, 2005). The observed mechanical response
of the peat is, in turn, related to the nonlinear elastic properties of the peat matrix, its gas content, and state
of decay (Kennedy & Price, 2005; Reeve et al., 2013). Thus, surface motion of peat results from four
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contributing factors (Fritz et al., 2008; Kennedy & Price, 2005): growth because of accumulation; irreversible
subsidence caused by drainage, compression, and decay of organic matter; and reversible elastic deformation
of the peat matrix due to seasonal and shorter‐term variation in the mass of water and gas stored within the
peat. Each of these contributing factors relates to peat condition, and this in turn relates to ecosystem ser-
vices provided by peatlands (Glenk et al., 2014). In short, long‐term peat growth is indicative of carbon
sequestration and good condition; long‐term subsidence is indicative of carbon loss and poor condition;
and reversible seasonal deformation is sensitive to the elastic properties of the peat matrix which are in turn
sensitive to degradation (Kennedy & Price, 2005).

To some extent, the relationship between condition and surface motion is intuitive. Taking the peatlands of
the Flow Country, Scotland (which has the largest extent of blanket bogs in Europe), as a worked example, a
degraded, drained, dense peat is expected to display amarkedly different surfacemotion dynamic in compar-
ison to low‐density water and gas saturated young Sphagnum peat. Yet detailed studies of peatland surface
motion, beyond simplemeasures of subsidence, are rare (e.g., Fritz et al., 2008; Kennedy & Price, 2005; Reeve
et al., 2013) and tend to be confined to a small spatial scale because of the logistical and financial challenges
posed by large‐scale field surveys. An ability to observe surface motion of peatlands continuously and reli-
ably across large geographical regions, and in turn learn of their condition, would enhance understanding
of peatland systems and their role in global environmental change and thus inform future management
and conservation decisions pertaining to this fragile but valuable landscape (Lees et al., 2018).

Recent progress in Earth Observation, both in sensor technologies and algorithmic advances, means that
peatland surface motion can now be measured using satellite interferometric synthetic aperture radar
(InSAR) techniques (Fiaschi et al., 2019; Kim et al., 2017; Zhou et al., 2016). In particular, a recent
development in satellite InSAR methods, the Intermittent Small Baseline Subset (ISBAS) differential
InSAR (DInSAR) algorithm (Bateson et al., 2015; Gee et al., 2016; Sowter et al., 2013; Sowter et al.,
2016) that has been successful in measuring surface motion of peat surfaces using data from the
Sentinel 1 C‐band radar sensor (Alshammari et al., 2018; Cigna et al., 2014), creates the potential to
investigate in detail peat surface motion on an unprecedented scale. Unlike previous InSAR techniques,
which provide patchy, unusable coverage in rural and forested areas, the ISBAS algorithm affords near
continuous coverage across almost all rural land‐cover classes—indeed ISBAS has been shown to be
able to provide a level of coverage in rural areas in excess of most other InSAR methods (Gee et al.,
2016), including SqueeSAR (Grebby et al., 2019). Trials have established that millimetric precision can
be obtained on rates of 0.1 to >2 cm/year in peatland with a spatial resolution up to 100 × 100 m
(Cigna et al., 2014) a range suited to quantifying the long‐term rates of change observed in northern
peatlands (Waddington & McNeill, 2002; Wosten et al., 1997).

It must be emphasized that the ISBASmethod is a coherent scatterer technique where a pixel is likely to con-
tain a large distributed group of small scatterers of similar size whose response is constant over time. For syn-
thetic aperture radar (SAR) resolutions down to 10 m in size, this will be true for most natural scatterers such
as forests and agricultural land (Even & Schultz, 2018) and probably even more so for a homogeneous peat-
land surface. Note that this is in marked contrast to a permanent scatterer (PS) approach (e.g., Ferretti et al.,
2000; Ferretti et al., 2001) where it is assumed that there is a single dominant scatterer within a resolution
cell. For this reason, a PS method is less likely to succeed over a natural surface. Forest canopies are often
assumed to be inpenetrable to C‐band radar, despite there being several studies to the contrary based upon
the application of interferograms in densely canopies regions (Mohammadimanesh et al., 2018; Wdowinski
& Hong, 2015). It is clear, though, that the InSAR coherence of forests is highly intermittent which is gen-
erally a barrier to most time series InSAR methods that require a consistent response. However, this lack
of constancy is not a barrier to the ISBAS method, which has been designed specifically to work over such
areas. Indeed, over most forest types, almost full coverage of InSAR observations is possible using this tech-
nique (e.g., Gee et al., 2019).

Of particular note is that the ISBAS technique can be used to generate time series of surface motion that cap-
ture annual, seasonal, and interseasonal motion of the peat surface (a direct benefit of the improved tem-
poral resolution of Sentinel‐1 which acquires data every 6–12 days over the entire land surface of the
planet). The characteristics of time series of peatland surface motion are potentially diagnostic of peatland
condition (Howie & Hebda, 2018). If InSAR can produce reliable and diagnostic time series over peatland,
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then the technique would enable a new view of peatland surface motion
and its relationship to condition and hydrology on a landscape scale and
become a powerful tool for landscape scale peatland monitoring across
whole catchments, regions, and countries. It must be noted that there is
a key barrier to determining the potential of applying InSAR to quantify
peatland dynamics and that is the mismatch between the large scale of
observation, accuracy, and precision of InSAR and small‐scale field obser-
vations, which makes it extremely difficult to validate the accuracy of the
InSAR results. For example, most published studies depend on transects
or single point measures that would be inappropriate to describe the
motion of a 80‐m × 60‐m pixel area as considered in this study. An alter-
native approach to validating the application of InSAR to quantify peat
condition is to abandon concerns of absolute accuracy and focus on
whether the characteristics of the InSAR time series can be used to quan-
tify peatland condition, in effect using the InSAR time series as an opera-
tionally defined measure, or proxy. The underlying premise that will
allow this approach to work is that the InSAR results are representative
of the surface motion and that in turn surface motion is representative
of peat condition. If attained, this presents an unprecedented view of
the peatland.

In this paper, we assess the application of InSAR and the ISBASmethod to
evaluate peatland condition by applying the ISBAS method to character-
ize peat motion at high frequencies (via analyses of time series data) over
an 21‐month period at 22 discrete peatland study sites in the Flow

Country, Northern Scotland (Figure 1). Peat condition at each site was determined using plant functional
types quantified via field observation, combined with management and land use history data and optical
satellite imagery. For each site, the determined peatland condition was compared to the time series data
characteristics and the observations evaluated in the context of surface motion, water storage, plant func-
tion, and surface energy balance.

2. Materials and Methods
2.1. Location and Study Site Selection

Twenty‐two study sites (Table 1), each cover by two to six ISBAS pixels, were selected in the Flow Country,
northern Scotland (centered on 58.371478°N, 3.658447°W—Figure 2a), the largest blanket bog in Europe, to
cover a spectrum of peatland conditions. For the purpose of the study, a site is defined as a collection of
InSAR pixels found within a peatland forming a mesotope (as defined by Lindsay, 2018). The sites are widely
dispersed over a 1,200‐km2 area, range in altitudes from 100 to 400 m above sea level and have varied hydro-
logical setting and management histories. Two complementary approaches were taken to site selection: 15
sites were chosen to cover a range of average surface motion (m/year) as had been measured using the
ISBAS method over a 21‐month period—March 2015 to December 2016 in Alshammari et al. (2018)
(Figure 2b) and 7 sites were chosen on account of having existing detailed field measures of peatland condi-
tion. Continuous water level data were available for 3 of the 22 sites—where it had been recorded every 30
min along with water temperature with Orpheus mini data loggers.

2.2. Site Analysis of Land Cover

For each of the 22 study sites selected for analyses, permission was sought from landowners to undertake
vegetation surveys on the ground. Supporting this vegetation survey was a cloud‐free Sentinel‐2
Multispectral Instrument image. Of these 22 study sites, 12 study sites were visited over a period of 7 days
in the peak of the growing season in 2017. At each of those 12 study sites, 4–6 survey locations were ran-
domly selected. At each survey location, a 10‐m× 10‐m2 was centered on the GPS coordinate of the spatially
coincident Sentinel‐2 pixel and the four sides of each square were aligned with the cardinal points, thus in
the same orientation as the Sentinel‐2 pixels. In each of the 10 × 10‐m2, the percent cover of key plant func-
tional types (Sphagnummosses, other mosses, lichen, ericaceous shrubs, sedges, grasses, and trees) as well as

Figure 1. Location of the Flow Country in Northern Scotland.
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key features associated with peatland condition and with the potential to influence the spectral signature of
the Sentinel‐2 data (bare peat, open water, and vegetation litter/brash) were noted. For each functional
group identified, dominant species were also noted. Each square was photographed from the southeast
corner, facing north and vegetation patterns reflecting density and spread of dominant plant functional

Table 1
Site History and Comparison of Site Condition Parameters Derived From Site Visits/Sentinel‐2 Optical Imagery (Dominant (>50% Cover) Vegetation Types) and
Sentinel‐1 ISBAS InSAR Data

No.
Study site
name

Location
OSGB

No. of
InSAR
pixels Site description

Dominant
vegetation type

InSAR condition parameters
Peatland
condition
score

Mean motion
(m/year)

Subsidence
class

1 Causemire
Windfarm

ND1669349095 5 Pool Systems adj. forestry, commercial
peat cutting, and wind farm

shrubs and
sedgesa

−0.0100 High 2.6

2 Smigel Burn NC9246557048 5 Peat edge adj. natural and man‐made
drainage

sedges and
Sphagnuma

−0.0080 High 2.4

3 Wedder Hill NC9162442992 4 Drained peatland edge adj. stream and
drains

shrubgs and
sedgesa

−0.0050 High 3.0

4 Eileag Burn NC8360436289 4 Incised peat adj. drains shrubs and
sedgesa

−0.0040 Moderate 3.0

5 Cross Lochs NC8436943685 5 Low disturbance with established pool
systems

sedges and
Sphagnum

0.0007 Stable 2.0

6 Blar Geal ND1016251082 4 Area of pools adj. forestry Sphagnum and
sedgesa

0.0019 Stable 1.3

7 Chalybeate
Springs

ND1194738116 4 Low disturbance with established pool
systems

sedges and
Sphagnuma

0.0007 Stable 1.8

8 Cnoc
Gleannain

ND0342134141 6 Low disturbance peatland without pool
systems

sedges and
Sphagnuma

−0.0020 Low 2.3

9 Overcaig Hill ND0324531805 6 Pool system adj. drain bare peat and
shrubs

−0.0040 Moderate 3.8

10 Strathmore
Lodge

ND1123846620 4 Area adj. pool system and historic drainage sedges and
Sphagnuma

0.0026 Stable 2.1

11 Knockfin
Heights

NC9256634235 4 Upland, mosaic of pool systems, peat hags,
and bare peat

bare peat and
shrubs

−0.0050 High 4.0

12 Munsary
Lochans
North

ND2173446261 4 Low disturbance with established pool
systems

Sphagnum and
sedges

−0.0012 Low 1.0

13 Rohan Dubh
Lochans

ND2292145525 6 Pool dystem near forestry plantation
removed forestry

shrubs and
sedges

−0.0033 Moderate 2.5

14 Munsary
Lochans
South

ND2271744026 4 Area of former pools adj. historic drainage sedges and
Sphagnum

−0.0008 Low 1.5

15 Loch na Feur ND2278741728 6 Area adj. forestry plantation and
associated drainage

shrubs and
sedges

−0.0030 Moderate 3.0

16 Moss of Whilk ND2908240479 4 Former forestry and wind farm
development

brash −0.0056 High 5.0

17 Loch Talaheel NC9479448635 6 Forest‐bog restoration, drain‐blocking shrubs, brash,
and grasses

−0.0063 High 2.7

18 Loch Sletil NC9683745922 4 Former forested peatland ‐ forest‐bog
restoration

sedge, brash, and
Sphagnum

−0.0054 High 1.8

19 Fountains
Dyke

NC8524844304 6 Pool systems immediately adjacent to
forestry

Sphagnum and
sedges

−0.0010 Low 1.2

20 Loch Caluim ND0132552946 6 Dry peatland adj. natural drainage shrubs and
sedges

−0.0046 Moderate 2.8

21 Forsinain/
Dyke

NC8907446472 2 Forested peatland and associated drainage Conifers and
needle littera

−0.0048 Moderate 6.0

22 Backlass Moss ND1971353032 4 Drained formerly forested peatland brash and
shrubsa

−0.0056 High 3.0

aSites for which in situ vegetation surveys were not possible due to access restriction. There, local knowledge and Sentinel‐2 surveys were used to derive domi-
nant vegetation. Brash refers to coniferous branches and needles left over from forestry removal management activies. Water level data were only available for
three sites (Sites 12, 14, and 15). Condition categories were defined using the Braun‐Blanquet Scale (Poore, 1955) and are described in section 2.3. No. of InSAR
pixels refers to the number of ISBAS pixels (each 4,800 m2) comprising each site (in total 103 ISBAS pixels distributed across the 22 study sites).
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groups were drawn and annotated for future reference. For each site, general condition was further assessed
by noting the presence of drains, tracks, evidence of deer trampling or browsing, presence of natural pools,
restoration activity, and estimating distance to road, forestry or infrastructure within a 100‐m × 100‐m area
around the groups of squares. Land use history was documented by discussion with land owners.

For 10 survey sites access was not possible during the survey period, but all had been previously visited for
other projects by one of the authors, or by land managers. Using this information and that obtained from
surveys of the 12 study sites that had been visited, the remaining 10 study sites were characterized via a clas-
sification of the afore‐mentioned Sentinel‐2 Multispectral Instrument optical satellite image (dated from
September 2015; downloaded from earthexplorer.usgs.gov and preprocessed using the Sentinel‐2 toolbox
from European Space Agency to resample all wavebands to 10‐m spatial resolution). A series of land cover
classifications were conducted, with pixels covering the 10 inaccessible study sites allocated to one of the

Figure 2. (a) Spatial distribution of the 22 study sites within the FlowCountry along with (b) the line‐of‐sight velocitymap
from ISBAS processing using Sentinel‐1 data for the period (March 2015 to November 2016—as per Alshammari et al.,
2018). Projection: WGS_1984_UTM_Zone 30. Note negative values correspond to subsidence, that is, moving away from
the sensor and vice versa.
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following classes: water, Sphagnum, sedges, shrubs, bare peat, grass, trees, and brash. The classifiers used
were (i) support vector machine, (ii) spectral angle mapper, and (iii) spectral information divergence
(Mather & Koch, 2011; Mathur & Foody, 2008), and the resultant classified pixels for the 10 remaining sites
were determined by way of an ensemble decision rule (Foody et al., 2007). Given that these sites were inac-
cessible an accuracy assessment was not possible hence the use of an ensemble approach. The dominant
(most frequently occurring) land covers allocated to the Sentinel‐2 pixels across each of the 10 sites were
noted. This combination of detailed field observations and spectral discrimination of the Sentinel‐2 imagery
afforded the determination of the peatland condition (see section 2.3) of each of the 22 study sites used in the
subsequent analyses.

2.3. Determination of Peatland Condition

All the information on each study site was put together, and, supported by the literature, condition cate-
gories were established that represent a gradation in peatland condition using the Braun‐blanquet scale
(Poore, 1955). Typical conditions are illustrated in Figure 3. Condition 1 represents what is generally consid-
ered to be wet peatland in good condition with a shallow water table (<10 cm below peat surface) with high
Sphagnummoss cover (≥50%) growing in large continuous carpets and high cover of sedges (also ≥50%, lar-
gely dominated by Eriophorum angustifolium and Tricophorum germanicum), with some shrubs (mostly
Erica tetralix). Condition 2 represents wet peatland in relatively good condition with some patches of
Sphagnummosses (25–50%) and sedges (25–75%), but signs of disturbance or lower water table, for example,
increased shrubs, particularly Calluna vulgaris and lichen, small patches of bare peat, or evidence of deer
activity. Condition 3 represents degraded peatland sites with small clumps of Sphagnum mosses (10–25%)
often including species associated with disturbance (e.g., S. tenellum and S. fallax), high sedge cover (20–
75%) combined with shrub and lichen dominance, presence of grasses (e.g., Molinia caerulea and
Deschampsia flexuosa) and indication of disturbance at the wider scale, for example, drainage ditches, areas
of bare peat (10–25%), deer trampling or known past disturbance (hill drains, grazing, fire). Condition 4 is
generally considered to be highly degraded peatland in poor condition with a deep water table (typically
>15 cm below surface and with sustained periods >20 cm) evidenced by large areas of bare peat (>25%), a
predominance of shrubs almost exclusively C. vulgaris fewer sedges and less than 10% Sphagnum confined
to small isolated clumps, also including clear disturbance both within the squares and in the wider area.
Condition 5 defines clear‐felled conifer plantation on peat that displays typical linear features associated
with past furrows and plow through and has high cover of brash. Condition 6 defines commercial conifer
plantation on peatland, with dense cover of Pinus contorta and Picea sitkensis and understorey characterized
by needle litter, no Sphagnum and sparse cover of forest mosses. Using these condition categories,
Conditions 1–6 were attributed to each ISBAS pixel within a site (Figures 3 and 4) and an average condition
score calculated for each site based on the average of the attributed condition value (1–6) (Table 1).

2.4. InSAR Processing and the ISBAS Method

The ISBAS method is a coherent pixel technique and is a novel variant of the Small Baseline Subset method
(Berardino et al., 2002). The main novelty lies in the abandonment of the requirement for consistent phase
stability in all observations, which is a requirement for most time series InSAR methods (Hooper et al.,
2012). It has been fully validated through comparisons with leveling (Gee et al., 2016) and over urban areas,
which demonstrated that standard errors of less than 2mm/year are possible. Although, in terms of time ser-
ies, there is a increased level of noise in rural areas, which may be due to a decrease in observations due to
intermittent coherence but also may reflect the naturally high variations of a natural surface, ISBAS results
fully agree with subsidence characteristics from other InSAR surveys, such as PSInSAR (Gee et al., 2017;
Sowter et al., 2016). The method has been shown to detect subsidence and uplift features associated with
underground mining under agricultural and forested areas (Bateson et al., 2015; Gee et al., 2017; Sowter
et al., 2013). More recently, the ISBASmethod has been shown to give near complete land area coverage over
peatland areas (Alshammari et al., 2018; Cigna & Sowter, 2017).

The analysis here used freely available Sentinel‐1 C‐band SAR data from the European Space Agency's
Copernicus Open Access Hub [scihub.copernicus.eu] that covered a 21‐month period from March 2015 to
December 2017. The Sentinel‐1 mission is part of the European Union's Copernicus Programme, which
plans to regularly gather environmental data over the entire globe for the foreseeable future. Rates of motion
and time series are generated relative to selected stable reference points. In this study the stable reference
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point used is located at Dounreay on the north coast at 58°34′37.9″N, 03°44′10.4″W (following Alshammari
et al., 2018). ISBAS InSAR processing used a temporal baseline of 21 months and a normal perpendicular
baseline of 200 m. A map of the images and pairs used provided (supporting information Figure S2). The
work of Cigna et al. (2014) points out that the standard error is dependent on the number of coherent
layers used. Although Sentinel‐1 data used was across a 21‐month period, there were 47 images acquired,
forming 1,071interferograms. This implies a high redundancy and, therefore, good precision of better than
2 mm in this case. Processing of these outputs will then provide two InSAR motion data sets for each
ISBAS pixel (an ~80‐m × 60‐m area): the long‐term motion trend over the full 21‐month period and the
subannual variation in surface motion. At most of the study sites (Table 1 and Figure 2) the data sets were
extracted from four to six ISBAS pixels the only exception being the forested site, which was covered by
only two ISBAS pixels.

The use of long temporal baselines, in this case up to 21 months, is important in the identification of more
subtle deformation trends. Over vegetated and natural surfaces, it may be anticipated that long baseline pairs
contain no useful velocity information as InSAR requires invariant phase conditions to maintain phase
coherence. Practical demonstrations of this over permafrost areas in the summer period (e.g., Liu et al.,
2010) have shown that, on the contrary, good phase measurements are possible when using pairs from

Figure 3. Photographic data illustrating an example site for each of the six peatland conditions. For each condition type an extract of the ISBAS surface motion
output (m/year) is presented with the red dots representing the ISBAS pixels used in subsequent analyses (as listed in Table 1); the site used for illustration sta-
ted in the caption.

Figure 4. Histogram illustrating range of conditions encountered on each site. Frequency refers to the number of 60 × 80‐
m2 ISBAS pixels in a particular condition category on each site.
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season‐to‐season and over a number of years. For this reason, we do not
restrict the analysis to short pairs only.

It will be noted that the ISBAS coverage over the forested areas was not
complete in some cases. As mentioned above, the ISBAS method allows
measurement of intermittently coherent pixels but only if the pixel is
coherent in enough interferograms to meet an arbitrary threshold.
Forests can be particularly challenging in this respect and, although cov-
erage was generally excellent, some pixels did not meet this criteria and
are excluded from the survey.

2.5. Time Series Processing of the ISBAS InSAR Outputs

The displacement time series was extracted from the ISBAS InSAR out-
puts as per section 2.4, using a method identical to that used in Small
Baseline Subset data processing (Berardino et al., 2002). This involves

the adjustment of the InSAR pairs to derive the displacement at each observation date and then filtering
to remove the atmospheric phase screen. Trends in the short time series were extracted using singular spec-
trum analysis and Kendalls Tau nonparametric trend test in the SSA‐MTM toolkit (Dettinger et al., 1995;
Ghil et al., 2002). Seasonal timing of peaks and troughs was determined from the position of maxima and
minima in trends fromwhich the long‐term linear component had been removed. To enable a more effective
comparison between the InSAR time series and water level time series, normalization was applied by sub-
tracting the mean and dividing by the standard deviation. Where normalization is applied this is stated in
the figure caption.

In presenting and referring to the InSAR data the convention used throughout this paper is that subsidence,
that is, displacements moving away from the satellite sensor are shown as negative values and vice versa.

3. Results
3.1. Peatland Condition and Associated Surface Motion

From the collated study site information (Table 1 and Figures 3 and 4) it is evident that all peatland condition
categories (1 to 6) are present within the sample. Comparison of the average line‐of‐sight surface velocities
(m/year) for ISBAS pixels in each condition class (Figure 5) illustrates that Sphagnum‐deficient conditions
(i.e., Conditions 3–6) have significantly higher rates of subsidence than Sphagnum‐rich conditions
(Conditions 1 and 2).

3.2. Characterization of Peatland Behavior: Outputs From Time Series Processing

Based on the similarity of the trends extracted using singular spectrum analysis, the InSAR time series of
surface motion for each of the 22 study sites were seen to group into four categories labeled Categories A
to D (Figure 6). Category A sites display distinct high amplitude seasonal oscillations (Figure 6a);
Category B sites also display distinctly low amplitude seasonal oscillations (Figure 6b); Category C sites dis-
play a subsidence trend with little or no seasonal oscillation (Figure 6c); and Site 18 (Figure 6d) does not fit
into any of the Categories A to C and displays both high rates of subsidence and peak uplift during the year
(November–December) and thus been allocated to Category D. Category A shows a clear uplift trend that is
not indicated in the average velocity maps. However, the uplift trend is actually very small, with a rate of
only around 2 mm/year on average, and simply too small to show up on the color ramp used which runs
between ±15mm/year.

Using only sites covered by ISBAS pixels in Condition Categories 1 to 4 an average condition score was cal-
culated for each of the Categories A to D (Table 2). Average condition scores were not calculated for the
Forestry Sites 21 and 16 as these did not contain vegetation that is part of the natural continuum in plant
functional type. Category A sites have an average condition score of 1.64 and predominantly contain
ISBAS pixels in Conditions 1 and 2, and thus, Category A is associated with good peatland condition.
Category B sites have an average condition score of 2.89 and contain the broadest mix of conditions but
are predominantly covered by ISBAS pixels in Conditions 2 and 3, both good and poor peatland. Category
C sites have an average condition score of 2.96 and are dominated by Condition 3 (and one site that falls

Figure 5. Comparison of the average line‐of‐sight (LOS) velocity versus peat
condition category. Mean LOS velocity is the mean velocity of all ISBAS
pixels (n) in each condition category The error bars represent the standard
error of the mean of LOS velocity under each condition category.
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under Condition 5—Study Site 16 which is a former forested site). Forested sites lie in Category B (Site 21)
and clear felled forest sites in Categories C (Site 16) and D (Site 18). In this distribution of sites between
peatland condition and category it is evident that the presence/absence of Sphagnum is a key determinant
of good peatland condition.

The timings of seasonal peaks and troughs in the time series for study sites in Categories A and B are differ-
ent (Figure 7). Category A sites display a distinctly higher amplitude seasonal oscillations with peak subsi-
dence in April–June and peak uplift in August–November, whereas Category B sites display distinct low
amplitude seasonal oscillations with peak subsidence in July–October and peak uplift in February–June.

Comparison of normalized InSAR surface motion and water level (Figure 8) for Sites 12, 14, and 15 indicate
that, for the Sphagnum‐dominated Sites 12 and 14 (InSAR Category A, Conditions 1+2), there is notable
coherence between the InSAR seasonal trends and some coherence in the interseasonal oscillations. For
Site 15, the only site with drainage and signs of degradation (InSAR Category C, Condition 3), interseasonal
oscillations appear to be out of phase and the InSAR time series does not display a seasonal trend.

4. Discussion

The peatlands of the Flow Country in northern Scotland have been examined in a novel and unprecedented
way by virtue of the recent availability of Sentinel‐1 SAR data and the development of the ISBAS technique
(Sowter et al., 2016). Building on earlier studies (Alshammari et al., 2018; Cigna & Sowter, 2017), which
demonstrated the potential of using InSAR for surface motion measurements in peatland, peatland surface
motion was measured at high temporal frequencies, at unprecedented spatial resolutions, and demonstrated
to be linked with peatland condition. Sites in good condition (wet, Sphagnum dominated, often with pool
systems) display markedly different long‐term and seasonal surface motion trends in comparison to
shrub‐dominated sites associated with poorer condition over the same period. Furthermore, although lim-
ited to three sites, comparison of surface oscillations measured by InSAR to water level indicates that for
wet sites in good condition the two are strongly related and track each other, an observation that is consis-
tent with other field observations that indicate peatland surface motion tracks changes in water level (Fritz
et al., 2008; Reeve et al., 2013).

It would seem to be the case that the InSAR‐derived surface motion time series provide a measure of the
mechanical movement of the surface as it responds to changing water storage within the peat. By applying
this explanation, the InSAR‐derived surface motion time series can be thought of as being composed of long‐

Figure 6. InSAR time series trends from the 22 sites grouped by Categories A (a), B (b), C (c), and D (d).
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term unidirectional changes in the mass of organic matter and water stored in the peat and short‐term
reversible seasonal or higher frequency oscillations in response to drying and wetting (Camporese et al.,
2006). The presence of seasonal oscillations indicates a direct link between the mechanical motion, water
storage, and surface energy balance of the peatland (Lafleur et al., 2005), and it is in this context that the
mechanisms linking peatland condition to the characteristics of the InSAR‐derived surface motion time
series will be discussed.

Of the 22 study sites under analysis those labeled as Category A by virtue of their InSAR‐derived surface
motion were Sphagnum and sedge dominated with a shallow, near‐surface water table and most harbor
extensive pool systems. Evaporation through Sphagnum is directly linked to the evaporative demand of
the atmosphere and depth to water table. The high‐amplitude seasonal cycles and midsummer/midwinter
seasonal minima and maxima are therefore most likely due to the seasonal influence of evaporative demand
on water loss through Sphagnum species (Lapen et al., 2000). In terms of latent heat flux (QE) partitioning,
the maximum partitioning to Sphagnum occurs at the time of minimum leaf area index in late April to early
May when moss is at its wettest and before the peak QE in vascular systems (Admiral & Lafleur, 2007).
Maximum drawdown of Sphagnum surfaces should therefore precede vascular surfaces. The surface motion
of Sphagnum bogs is also considered a self‐preservation mechanism (Golubev & Whittington, 2018). As
water is lost in response to increased evaporative demand the surface elevation drops, maintaining a rela-
tively constant and essential supply of moisture to the Sphagnum surface (Golubev & Whittington, 2018;
Lafleur & Roulet, 1992). If the water level continues to fall water transfer through Sphagnum becomes
increasingly difficult and water loss through the surface becomes negligible (Kettridge et al., 2016; Lafleur
& Roulet, 1992), effectively acting as a negative feedback that acts to constrain the later growing season
drawdown of the Sphagnum surface. The physiology of Sphagnum therefore shifts maximum drawdown

Table 2
Conditions Associated With Each Time Series Category

Sites in category Average condition score
Number of ISBAS pixels in a particular condition associated with the each time
series category

Condition category

1 2 3 4 5 6

Time series Category A 5,6,7,10, 12,14,19 1.64 16 13 4 0 0 0
B 2,3,4,8, 11,17,20, 21 2.89 5 2 22 8 0 2
C 1,13,9,15,16, 22 2.96 0 4 16 3 4 0
D 18 1.75 2 1 1 0 0 0

Note. Average condition score is the average condition of an ISBAS pixel in each time series category and is calculated by assigning Values 1–4 to Condition
Categories 1–4. Number of ISBAS pixels in each category is also presented and is derived from the site data presented in Figure 4. Note that Condition
Categories 5 and 6 corresponding to Forested Sites 21 and 16 (in bold) were not used in the calculation of the average condition score.

Figure 7. Histogram showing the frequency and timing of the troughs and peaks in time series Categories A (in Orange)
and B (in Blue).
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Figure 8. Comparison of water level to InSAR time series. Both the surface motion and water level have been normalized relative to the mean and standard devia-
tion. (a) Site 12 is a Category A site with a condition score of 1, and the result water level is the average of two closely spaced piezometers, one in a hollow at OSGB
coordinates ND 21761 46322 and the other on a low ridge at ND 21767 46318. (b) Site 14 is a Category A site with average condition score of 1.5, position of the
piezometer is on a low ridge at OSGB coordinates ND 22974 45573. (c) Site 15 is a Category C site with average condition score of 3, positions of the piezometer is on
a low ridge at OSGB coordinates ND 22746 44079.
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and recharge of the water table and associated surface motion to a midsummer/midwinter pattern that
aligns with seasonal variations in evaporative demand in the United Kingdom (Robinson et al., 2017).

Category B sites are interpreted as degraded but not as severely degraded as Category C sites. These sites
include a greater mixture of plant functional types, are dominated by vascular plants but do include some
areas of Sphagnum, and are interpreted to be generally wetter with a greater capacity for seasonal water sto-
rage. Unlike Category C sites, the seasonal oscillations are distinct but generally of lower amplitude than
those observed in Category A sites. This is interpreted as indicating that the water table is shallower than
at Category C sites and deeper than at Category A sites with variations occurring within a less degraded peat
with greater porosity, elasticity, and specific storage than the Category C sites. The predominance of deeper
rooted vascular plants that exercise a strong seasonal evapotranspiration drawdown on water level through-
out the growing season may explain why water levels reach a minimum at the end of the growing season in
late summer/early autumn and recover to a maximum ahead of the growing season in late winter/early
spring (Bourgault et al., 2017). This interpretation is supported by studies of QE partitioning, which indicate
that the QE from vascular plants peaks when leaf area is at its maximum in June–July and stays high until
senescence in the late growing season (Admiral & Lafleur, 2007).

Category C sites are degraded due to drainage, display sustained subsidence, contain little or no Sphagnum,
and lack seasonal oscillations. The lack of seasonal oscillation probably results from several factors asso-
ciated with peat degradation. Loss of compressibility and a reduced response to changes in effective pressure
within the peat is an irreversible consequence of enhanced decay at the more degraded sites (Kennedy &
Price, 2005; Waddington & McNeill, 2002). A lack of responsiveness to changes in surface energy (via both
evaporative demand and evapotranspiration) is due to a deep falling water table and water storage below
root depth (Lafleur et al., 2005) imposing a mass transfer limitation on water loss by evapotranspiration
(Schwarzel et al., 2006). Low permeability and porosity of the compacted, humified, inelastic peat combined
with the possible presence of fracture porosity because of shrinkage does not permit significant water storage
within the peat matrix.

The distinctiveness of the Category D, Site 18 (Figure 6d), which displays surface motion characteristics that
are a mixture of Category A and Category C, is interpreted as being indicative of site management specifi-
cally: Following two decades under forestry management (conifer plantation), the site was felled (trees
and brash left on site, rolled into the furrows dug for forestry) and drains were blocked in 2003–2004, with
further blocking of furrows and brash crushing to smoothen the surface completed in 2016–2017. The
Category C component is interpreted as evidence of shallow water table and probable colonization by
Sphagnum in areas of ditch blocking. The strong subsidence component more typical of Category C sites
could indicate that despite rewetting the site is still losing mass, which is consistent with observations
(Hambley, 2016) or could be in part due to compaction by heavymachinery during the final phase of restora-
tion in 2016–2017. It is also notable that this contrasts with Site 17, another forest to bog restoration site,
which was restored in 1998 which, although drier and dominated by shrub vegetation, displays surface
motion trends that lie within Category B and is a net carbon sink (Hambley, 2016).

The step change in the InSAR characteristics between wet, Sphagnum‐rich sites in good condition and sites
with a deeper water table in poorer condition has the potential to provide a threshold for characterizing peat-
land condition. A similar step change has been noted with respect to the evapotranspiration behavior in
Ontario peatlands (Lafleur et al., 2005) with evapotranspiration declining markedly when the water table
depth drops more than 60 cm below hummock top. Similarly, a water table depth threshold of 35 cm has
been reported for reduction in evapotranspiration through mosses (Mezbahuddin et al., 2016). In both
instances the step change occurs when mass transfer limits water loss by evaporation or evapotranspiration.
To account for the relationship between evapotranspiration, plant functional type, and water table depth,
Lafleur et al. (2005) proposed the following three‐stage conceptual model. At sites with a shallow water table
(<30 cm) Sphagnum dominates and loss of water by evaporation is not significantly limitedmass transfer. As
the water table falls to depths of between 30 and 60 cm shallow rooted vascular plants increasingly dominate
the evapotranspiration. As the water table falls below the maximum rooting depth of the vascular plants
there is a step change when the mass transfer of water to plant roots becomes the predominant factor con-
trolling rates of evapotranspiration rather than the evaporative demand. In many ways, this is remarkably
similar to the interpretation given above with the exception that the three‐stage model proposed by
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Lafleur et al. (2005) addresses the evapotranspiration trends over a season at a single site and not the varia-
tion between sites. It is also similar to the observations of Schwarzel et al. (2006) who noted that in dry years
evapotranspiration is limited bymass transport in the soil, whereas in wet years evapotranspiration is mostly
controlled by evaporative demand. Mechanisms that underpin themodel of Lafleur et al. (2005) and the con-
clusions of Schwarzel et al. (2006) should be equally applicable to sites in different condition. Sites experien-
cing long‐term drainage and water loss behave in a manner that is equivalent to the water table falling below
the maximum rooting depth. A step change, due to a shift in the processes controlling mass transfer, occurs
between the wet, growing, Sphagnum dominant sites and those with a long‐term falling water table.

5. Conclusions

The interpretation presented carries important implications: Surface motion attributed to changes in water
budget, water table depth, and energy balance are also linked to carbon balance and net ecosystem exchange
(Laine et al., 2007; Mezbahuddin et al., 2017; Moore et al., 1998). Hence, if the InSAR time series capture
meaningful characteristics of the surface motion, this will open up a new view of peatland dynamics on
an unprecedented scale that could not be practically achieved using standard field‐based techniques. As
changes in water storage due to drainage or restoration should precede ecological change, InSAR time series
characteristics also have the potential to offer a sensitive monitoring tool that can be used to quantify evol-
ving peatland condition. InSARmeasure of surfacemotion could also be used to assess nonuniformity of bio-
genic gas buildup (Comas et al., 2005; Reeve et al., 2013) and investigate natural peatland successions, for
example, the postulated shift from hollow to hummock as bog elevation grows and species that tolerate drier
hummock conditions outcompete species that prefer wetter conditions (Robroek et al., 2007). The use of
InSAR time series should enable a new approach to regional peatland monitoring through the application
of time series analysis techniques more typically deployed in climatology and oceanography (e.g., principal
component analysis and extended empirical orthogonal functions). In turn, this approach may enable a
range of regional‐scale scientific questions to be addressed with respect to coupling between peat, landscape
and climate.

The InSAR measurements using the ISBAS method has resulted in remarkable coverage over a vegetated
region, something not usually anticipated when using a C‐band sensor. However, this has not been without
cost as the spatial resolution of the raw Sentinel‐1 data, around 14 m × 3 m, has had to be degraded in order
to reduce phase noise. Accuracy also improves with the number of observations (Cigna & Sowter, 2017), and
we would not anticipate good results if less than, say, 30 images were available over a site, which may limit
the capability to utilize archive satellite data from, for example, the ENVISAT and ERS missions. The
method may also benefit from a longer wavelength, such as L‐band, which has an improved capability to
measure the larger rates that characterize peat motion in other regions, such as the tropics.

Finally, what we have considered is the empirical relationship between the InSAR measures and the site
condition. We have not assessed the accuracy of the InSAR measurement. There is also a question as to
the representativeness of the InSAR signal and in particular whether different parts of the peat surface,
for example, hummocks and hollows, contribute equally to the InSAR measurement. By addressing these
questions, a far greater understanding of the radar response may be obtained. To achieve a true assessment
of accuracy will be difficult, as single points or short transects do not replicate the totality of the InSARmea-
surement obtained using the ISBAS method and where peatland field data are available the error in field
measurements is a major source of uncertainty. However, despite this validation difficulty the precision of
the measurement is sufficient to produce a meaningful signal that relates to peatland processes and condi-
tion. The results of this study could be used to underpin a satellite‐basedmonitoring system based on C‐band
SAR images that could operate over peatlands monitoring their condition at unprecedented scales.
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