81 research outputs found

    A Bayesian network based learning system for modelling faults in large-scale manufacturing

    Get PDF
    Manufacturing companies can benefit from the early prediction and detection of failures to improve their product yield and reduce system faults through advanced data analytics. Whilst an abundance of data on their processing systems exist, they face difficulties in using it to gain insights to improve their systems. Bayesian networks (BNs) are considered here for diagnosing and predicting faults in a large manufacturing dataset from Bosch. Whilst BN structure learning has been performed traditionally on smaller sized data, this work demonstrates the ability to learn an appropriate BN structure for a large dataset with little information on the variables, for the first time. This paper also demonstrates a new framework for creating an appropriate probabilistic model for the Bosch dataset through the selection of statistically important variables on the response; this is then used to create a BN network which can be used to answer probabilistic queries and classify products based on changes in the sensor values in the production process.<br/

    Detection of Voigt Spectral Line Profiles of Hydrogen Radio Recombination Lines toward Sagittarius B2(N)

    Full text link
    We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100-m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn(alpha) lines presented herein shows that RRLs of higher principal quantum number (n>90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high sensitivity, high resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial towards advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM)

    Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial: No Test Is More Equal Than the Others

    Get PDF
    Background: Previous reports identifying discordance between multiparameter tests at the individual patient level have been largely attributed to methodological shortcomings of multiple in silico studies. Comparisons between tests, when performed using actual diagnostic assays, have been predicted to demonstrate high degrees of concordance. OPTIMA prelim compared predicted risk stratification and subtype classification of different multiparameter tests performed directly on the same population. Methods: Three hundred thirteen women with early breast cancer were randomized to standard (chemotherapy and endocrine therapy) or test-directed (chemotherapy if Oncotype DX recurrence score &gt;25) treatment. Risk stratification was also determined with Prosigna (PAM50), MammaPrint, MammaTyper, NexCourse Breast (IHC4-AQUA), and conventional IHC4 (IHC4). Subtype classification was provided by Blueprint, MammaTyper, and Prosigna. Results: Oncotype DX predicted a higher proportion of tumors as low risk (82.1%, 95% confidence interval [CI] = 77.8% to 86.4%) than were predicted low/intermediate risk using Prosigna (65.5%, 95% CI = 60.1% to 70.9%), IHC4 (72.0%, 95% CI = 66.5% to 77.5%), MammaPrint (61.4%, 95% CI = 55.9% to 66.9%), or NexCourse Breast (61.6%, 95% CI = 55.8% to 67.4%). Strikingly, the five tests showed only modest agreement when dichotomizing results between high vs low/intermediate risk. Only 119 (39.4%) tumors were classified uniformly as either low/intermediate risk or high risk, and 183 (60.6%) were assigned to different risk categories by different tests, although 94 (31.1%) showed agreement between four of five tests. All three subtype tests assigned 59.5% to 62.4% of tumors to luminal A subtype, but only 121 (40.1%) were classified as luminal A by all three tests and only 58 (19.2%) were uniformly assigned as nonluminal A. Discordant subtyping was observed in 123 (40.7%) tumors. Conclusions: Existing evidence on the comparative prognostic information provided by different tests suggests that current multiparameter tests provide broadly equivalent risk information for the population of women with estrogen receptor (ER)–positive breast cancers. However, for the individual patient, tests may provide differing risk categorization and subtype information

    ACCESS-OM2 v1.0: a global ocean-sea ice model at three resolutions

    Get PDF
    We introduce ACCESS-OM2, a new version of the ocean–sea ice model of the Australian Community Climate and Earth System Simulator. ACCESS-OM2 is driven by a prescribed atmosphere (JRA55-do) but has been designed to form the ocean–sea ice component of the fully coupled (atmosphere–land–ocean–sea ice) ACCESS-CM2 model. Importantly, the model is available at three different horizontal resolutions: a coarse resolution (nominally 1∘ horizontal grid spacing), an eddy-permitting resolution (nominally 0.25∘), and an eddy-rich resolution (0.1∘ with 75 vertical levels); the eddy-rich model is designed to be incorporated into the Bluelink operational ocean prediction and reanalysis system. The different resolutions have been developed simultaneously, both to allow for testing at lower resolutions and to permit comparison across resolutions. In this paper, the model is introduced and the individual components are documented. The model performance is evaluated across the three different resolutions, highlighting the relative advantages and disadvantages of running ocean–sea ice models at higher resolution. We find that higher resolution is an advantage in resolving flow through small straits, the structure of western boundary currents, and the abyssal overturning cell but that there is scope for improvements in sub-grid-scale parameterizations at the highest resolution

    ACCESS-OM2 v1.0: A global ocean-sea ice model at three resolutions

    Get PDF
    We introduce ACCESS-OM2, a new version of the ocean–sea ice model of the Australian Community Climate and Earth System Simulator. ACCESS-OM2 is driven by a prescribed atmosphere (JRA55-do) but has been designed to form the ocean–sea ice component of the fully coupled (atmosphere–land–ocean–sea ice) ACCESS-CM2 model. Importantly, the model is available at three different horizontal resolutions: a coarse resolution (nominally 1∘ horizontal grid spacing), an eddy-permitting resolution (nominally 0.25∘), and an eddy-rich resolution (0.1∘ with 75 vertical levels); the eddy-rich model is designed to be incorporated into the Bluelink operational ocean prediction and reanalysis system. The different resolutions have been developed simultaneously, both to allow for testing at lower resolutions and to permit comparison across resolutions. In this paper, the model is introduced and the individual components are documented. The model performance is evaluated across the three different resolutions, highlighting the relative advantages and disadvantages of running ocean–sea ice models at higher resolution. We find that higher resolution is an advantage in resolving flow through small straits, the structure of western boundary currents, and the abyssal overturning cell but that there is scope for improvements in sub-grid-scale parameterizations at the highest resolution.This research has been supported by the Australian Research Council (grant nos. LP160100073, CE170100023, FT13101532, DP160103130 and DE170100184), the International Space Science Institute (grant no. 406), and the Australian Antarctic Science (grant nos. 4301 and 4390)

    Real-world persistence with antiretroviral therapy for HIV in the United Kingdom: A multicentre retrospective cohort study.

    Get PDF
    OBJECTIVES: Persistence with an antiretroviral therapy (ART) regimen for HIV can be defined as the length of time a patient remains on therapy before stopping or switching. We aimed to describe ART persistence in treatment naïve patients starting therapy in the United Kingdom, and to describe differential persistence by treatment regimen. METHODS: We performed a retrospective cohort study at eight UK centres of ART-naïve adults commencing ART between 2012 and 2015. Aggregate data were extracted from local treatment databases. Time to discontinuation was compared for different third agents and NRTI backbones using incidence rates. RESULTS: 1949 patients contributed data to the analysis. Rate of third agent change was 28 per 100 person-years of follow up [95% CI 26-31] and NRTI backbone change of 15 per 100 person-years of follow up [95% CI 14-17]). Rilpivirine, as co-formulated rilpivirine/tenofovir/emtricitabine had a significantly lower discontinuation rate than all other third agents and, excluding single tablet regimens, co-formulated tenofovir/emtricitabine had a significantly lower discontinuation rate than co-formulated abacavir/lamivudine. The reasons for discontinuation were not well recorded. CONCLUSIONS: Treatment discontinuation is not an uncommon event. Rilpivirine had a significantly lower discontinuation rate than other third agents and tenofovir/emtricitabine a lower rate than co-formulated abacavir/lamivudine

    Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses

    Get PDF
    The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species
    corecore