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Abstract

Coxian phase-type distributions are a special type of Markov model that can be used to represent survival
times in terms of phases through which an individual may progress until they eventually leave the system
completely. Previous research has considered the Coxian phase-type distribution to be ideal in representing
patient survival in hospital. However, problems exist in fitting the distributions. This paper investigates the
problems that arise with the fitting process by simulating various Coxian phase-type models for the
representation of patient survival and examining the estimated parameter values and eigenvalues obtained.
The results indicate that numerical methods previously used for fitting the model parameters do not always
converge. An alternative technique is therefore considered. All methods are influenced by the choice of
initial parameter values. The investigation uses a data set of 1439 elderly patients and models their survival
time, the length of time they spend in a UK hospital.

Keywords: Markov processes; stochastic models; survival analysis; statistical distributions; health services; elderly

healthcare

1. Introduction

Coxian phase-type distributions (Cox, 1955) are a special type of Markov model that can be used
to represent duration of time as a stochastic process consisting of phases through which elements
in the model progress until they leave the system completely at any stage into a final absorbing
phase.
Previous research has used Coxian phase-type distributions to represent survival times as the

length of time until a certain event occurs, where the phases are considered to be stages in the
survival and the absorbing, final stage, the event that occurs causing the individual or element to
leave the system completely. For instance, this event could be a patient recovering from an illness,
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a patient having a relapse, an individual leaving a certain type of employment, a piece of
equipment failing, or a patient dying. Faddy (1994) illustrates how useful the Coxian phase-type
distributions are in representing survival times for various applications such as the length of
treatment spell of control patients in a suicide study, the time prisoners spend on remand and the
lifetime of rats used as controls in a study of ageing.
In particular, Faddy and McClean (1999) used the Coxian phase-type distribution to find a

suitable distribution for the duration of stay of a group of male geriatric patients in hospital. They
found that the phase-type distributions were ideal for measuring the lengths of stay of patients in
hospital and showed how it was also possible to consider other variables that may influence
duration. More recently, Marshall and McClean (2003) have demonstrated how the Coxian
phase-type distribution can, unlike alternative approaches, adequately model the survival of
various groups of elderly patients in hospital uniquely capturing the typical skewed nature of such
survival data in the form of a Conditional phase-type model (C-Ph) which incorporates a
Bayesian network of inter-related variables.
The Coxian phase-type distribution is in fact a sub-class of the more general phase-type

distribution, very similar in character except that the transient states (or phases) of the model are
ordered in the Coxian phase-type distribution. The benefit of such a feature in the Coxian phase-
type distribution is the reduction in the number of parameters required to represent the
distribution therefore easing the process of parameter estimation. However, the fitting of
appropriate Coxian phase-type distributions can also lead to problems.
The focus of this paper is to investigate the fitting process, how this has been carried out in the

past and the potential problems that may arise. The process is examined by simulating various
Coxian phase-type models, and considering the fitted distributions for representation of patient
survival.
The investigation uses a data set of 1439 elderly patients and models their survival time, the

length of time they spend in a Geriatric department in a UK hospital.

2. Coxian phase-type distributions

A Coxian phase-type distribution fX(t); tX0g may be defined as a (latent) Markov chain in
continuous time with states f1, 2, . . . n, n11g, X(0)5 1, and for i5 1, 2, . . . n� 1

probfXðtþ dtÞ ¼ i þ 1jXðtÞ ¼ ig ¼ lidtþ oðdtÞ ð1Þ
and for i5 1, 2, . . . n

probfXðtþ dtÞ ¼ nþ 1jXðtÞ ¼ ig ¼ midtþ oðdtÞ: ð2Þ
Here, states f1, 2, . . . ng are latent (transient) states of the process and state (n11) is the
(absorbing) state. li represents the transition from state i to state (i11) and mi the transition from
state i to the absorbing state (n11) (Fig. 1).
The process begins in the first phase and may either progress through the phases sequentially or

enter into the absorbing state (the terminating event – phase n11). Such phases may then be used
to describe stages of a process which terminates at some stage. For example, in the case of the
process of the duration of stay of elderly patients in hospital, transitions through the ordered
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transient states could correspond to various stages in the patient’s stay such as stages of diagnosis,
assessment, rehabilitation and long-stay care where patients eventually are absorbed when they
leave the hospital completely due to discharge, transfer or death (Faddy, 1994).
Cox and Miller (1965) develop the theory of Markov chains such as those defined by (1) and (2).

The Coxian phase-type distribution is defined as having a transition matrix Q of the following
form,

Q ¼

�ðl1 þ m1Þ l1 0 . . . 0 0
0 �ðl2 þ m2Þ l2 . . . 0 0
: : : : :
: : : : :
: :: : :
0 0 0 . . . �ðln�1 þ mn�1Þ ln�1
0 0 0 . . . 0 �mn

0
BBBBBBBB@

1
CCCCCCCCA
; ð3Þ

where the li’s and mi’s are from Cox and Miller’s (1965) theory of Markov chains defined by (1)
and (2).
The probability density function (pdf ) of the Coxian phase-type distribution for time t is given

by

f ðtÞ ¼ p expfQtgq; ð4Þ
where p is a 1� n vector of probabilities defining the initial transient phases and q is a n� 1 vector
of rates from the transient states to the absorbing state, as shown in (5) and (6), respectively.

p ¼ ð1 0 0 . . . 0 0Þ ð5Þ
and

q ¼ �Q1 ¼ ðm1 m2 . . .mnÞT: ð6Þ
Previous research has fitted the pdf in equation (4) to various data sets of patient survival times

in hospital and found that it can be used to consider patients’ survival as a continuous variable
notionally partitioned into stages or phases of time. A patient will enter hospital at time zero thus
commencing a stay in hospital in phase 1. The patient spends a number of days in hospital until he
is discharged or dies upon which stage he leaves the system completely at a rate of m1, or he
continues his stay in hospital and moves into the next stage or phase of stay, phase 2. The
movement from phase 1 to phase 2 of duration of stay is represented by the rate, l1. The final
transition is when the patient leaves the hospital completely thus reaching the absorbing state of
the system. Phase 1 is generally considered as a state containing more of the acute shorter stay
cases with long stay patients more likely to continue their stay into the second phase, comprising

Phase 1 Phase 2 Phase nλ1 λ2

μ1 μ2 μn

Phase n+1

Fig. 1. An illustration of phase-type distributions.

A. H. Marshall and M. Zenga / Intl. Trans. in Op. Res. 16 (2009) 213–226 215

r 2009 The Authors.
Journal compilation r 2009 International Federation of Operational Research Societies



more of the those elderly patients who eventually transfer to a nursing home (Marshall and
McClean, 2003).

3. Fitting Coxian phase-type distributions

As previously noted, phase-type distributions have not always been considered a flexible means of
data representation due to the difficulties faced with estimating all the parameters of the
distribution. As it is impossible to find an exact solution, a numeric algorithm is required (Neuts,
1981). The implementation of such efficient numerical procedures for estimating the distribution
parameters remains an open problem that sometimes limits the use of this class of distribution in
applications. In order to overcome this difficulty, many studies have defined restrictions of the
Coxian representation; see for example Asmussen et al. (1996), Augustin and Buscher (1982), Bux
and Herzog (1977) and Faddy (1994, 1998, 2002).
The interesting nature of the phase-type representation of the Coxian distribution has inspired

many authors to continue to seek methods to solve the parameter estimation problem. Over the
years, several ways have been developed in pursuit of an ideal solution, of which three key
techniques have evolved.
The first of such methods is based on the maximization of the log-likelihood, or the

minimization of (� )log-likelihood:

�
Xn
i¼1

log p expfQtigq½ � ð7Þ

with respect to the parameters. Bobbio and Cumani (1992) suggested solving (7) by an iterative
linearization method of estimation. In particular, they proposed a technique based on the
canonical representation of acyclic phase-type (ACP), which is suited for the interpretation of
censored data samples. Asmussen et al. (1996) proposed a fitting procedure for the complete class
of phase-type distribution, based on the EM algorithm of Dempster et al. (1977) for incomplete
data developing the EMPht program to estimate the distribution parameters. Faddy (1994, 1998)
utilised the Nelder and Mead algorithm (1965) in the MATLAB (2001) software to find the
solution of (7), and remedied the problem of the non-convergence of the algorithm by introducing
penalized likelihoods (Faddy, 2002).
The second group of algorithms are based on moment matching. In a series of papers, Johnson

and Taaffe (1989, 1990a, b, 1991) show how the first k (finite) moments of any non-degenerate
distribution can be matched by a mixture of Erlang distributions of common order. The package
MEDA, developed by Schmickler (1992), works on a mixture of Erlang distributions and
implements a criterion based on the matching of the first moment combined with the
minimization of a deviation measure.
The third method used to fit the phase-type distributions is based on minimum distance (MD).

Parr and Schucany (1980) proposed a MD estimation procedure on the restricted class of ACP
distributions. The chosen distance to minimize was the distance of Kolmogorov–Smirnov
goodness-of-fit test. However, the most used method out of all of these techniques was based on
the least squares.
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In general, some authors compared the previously discussed methods concluding that, when the
original distribution is unknown, the method of the moments is the least effective (Riska et al.,
2002).

4. Medical data set

This paper considers a data set containing information collected during 2002–2003 to assist in the
management of patients in a UK department of geriatric medicine. There are 1439 patient records
which include the patient duration of stay (in days) in hospital. Patients were admitted to the
Geriatric Department where they stayed, receiving treatment for a period of time before leaving
the hospital either to return home, leaving to transfer to another hospital for care or leaving due
to death. Length of stay in hospital is measured from the patient’s time of admission to the time of
departure. It is a continuous variable with mean 24 days, median 13 days and mode 8 days. The
distribution of patient duration of stay in hospital, as illustrated in Fig. 2, is highly skewed
consisting of a large peak at the start of the distribution that gradually tails off as duration
increases. This skewness is also confirmed by the mean, median and mode which are not similar in
value.
The data were fitted to a Coxian phase-type distribution using the maximum likelihood

function and the Nelder-Mead simplex algorithm to perform parameter estimation. The
sequential procedure adopted by Faddy (1998), starts with a 1-phase distribution, n5 1
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Fig. 2. Patient length of stay in hospital.
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(corresponding to the exponential distribution) and considers such a representation for the patient
duration of stay. It then continues the fitting process trying to find a better fit for the data by
increasing the number of n phases until little improvement in the fit to the data can be obtained by
adding a new phase.
When fitting the Coxian phase-type distribution to this data set of patient duration of stay,

difficulties arose when estimating the parameters for more than three phases. In particular,
choosing the initial values in order to guarantee convergence appeared to be problematic. This
inspired the following investigation.

5. Simulating fits for the parameters of the Coxian phase-type distribution

The fitting procedure for the Coxian phase-type distribution is investigated by generating 1300
samples of initial values of the unknown parameters and using these as initial estimates for fitting
the 4-phase and 5-phase models of patient duration of stay in hospital. For the 4-phase model, the
samples will consist of seven units, the initial values for l1, l2, l3 and m1, m2, m3, m4, while for the
5-phase model, every sample is made of nine units, the initial values for l1, l2, l3, l4 and m1, m2, m3,
m4, m5. The initial values were generated from uniform distributions and the length of stay
distribution of elderly people in hospital fitted to a Coxian phase-type distribution using the
Maximum Likelihood method. In particular, it is wished to minimize equation (7) subject to the
following:

0)mj)1; j ¼ 1; . . . ; n
0)lj)1; j ¼ 1; . . . ; ðn� 1Þ

�
ð8Þ

using a Sequential Quadratic Programming (SQP) method. In this method, a Quadratic
Programming (QP) subproblem is solved at each iteration along with an update on the estimate of
the Hessian of the Lagrangian. A full description of this algorithm is found in the ‘‘Constrained
Optimization’’ section of the Introduction to Algorithms chapter of the MATLAB (2001)
toolbox.
The choice of this particular algorithm, in comparison with the simplex method used by other

authors (Faddy and McClean, 1999), is its ability to always converge, even when results are
enforced.

6. Results

The 1300 samples of initial parameter values for the 4-phase Coxian distribution, as expected,
yielded different fitted results. In fact, it was found that the representation was not unique, that it
was possible for the estimation procedure to obtain equivalent solutions. The 1300 samples of
initial parameter values used for fitting the 5-phase Coxian distribution also lacked an agreed fit.
The best model for the 4-phase Coxian distribution is illustrated in Fig. 3. The � loglikelihood
value is 5888.98, the smallest of those obtained from the 1300 samples of initial parameter values.
The mean and median values for expression (7) are 5906.4 and 5889.0994, respectively.
Table 1 displays the average values and confidence intervals for each of the seven parameters.
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In the case of the 5-phase Coxian model, the best representation has a (� loglikelihood) value
equal to 5884.2, significantly lower than that of the 4-phase Coxian fit as shown by the w2

goodness-of-fit test at the 90% level. The Akaike Information Criterion (AIC) penalizes for the
addition parameters, and thus selects a model that fits well but has a minimum number of
parameters based on simplicity and parsimony (Akaike, 1974). Using the AIC criterion, it appears

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

- input, - - fitted Phase-Type

D
is

tr
ib

ut
io

n

Fitted Coxian Distribution: 4 Phase

Fig. 3. The best fit for the 4-phase Coxian model.

Table 1

Average values and confidence intervals for parameters (four-phases model)

Parameter Mean Confidence interval

(1� a)5 0.99

m1 0.00107 (0.00057, 0.00156)

m2 0.02678 (0.02181, 0.03176)

m3 0.33290 (0.31223, 0.35357)

m4 0.13114 (0.11149, 0.15079)

l1 0.34901 (0.32860, 0.36942)

l2 0.34133 (0.32021, 0.36245)

l3 0.20926 (0.19467, 0.22384)

A. H. Marshall and M. Zenga / Intl. Trans. in Op. Res. 16 (2009) 213–226 219

r 2009 The Authors.
Journal compilation r 2009 International Federation of Operational Research Societies



5880 5900 5920 5940 5960 5980 6000 6020 6040
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

(b)

Frequency distribution of (-loglikelihood) : 4 phases model

5880 5900 5920 5940 5960 5980 6000 6020 6040 6060
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Frequency distribution of (-loglikelihood) : 5 phases model

Fig. 4. The distributions of (� loglikelihood) for the (a) 4-phase and (b) 5-phase model.
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that the 5-phase distribution having an Akaike weight of 0.94, better represents the data than the
4-phase distribution. Thus, this 5-phase model is 15.67 times more likely to be the best model than
the 4-phase model with the lower (� loglikelihood). Expression (7) has mean and median values
of 5904.61 and 5889.09, respectively for the 5-phase model. These values are almost the same as
those obtained for the 4-phase model.
Figure 4 displays the distributions for expression (7) for both the 4-phase and 5-phase model,

respectively. The 5-phase model appears to be better due to its lowest value of (7), however, the
median and the modal classes are the same for both models. The largest value for expression (7) is
almost identical in both models.
Table 2 displays the average values and confidence intervals for each of the nine parameters of

the 5-phase distribution. In comparison with the parameter values for the 4-phase distribution, it
is apparent that the parameters are not so different for both models.
Figure 5 illustrates the distributions for m2 and l4. From inspection of the values, it is possible

to see for m2 that the results are very close to one specified value. However, on inspection of the
values of parameter l4, it is apparent that there is a problem with identifying one specific value as
being prevalent. There is a considerable amount of variability in the parameter value. This
demonstrates that the initial values used for the distribution parameters appears to influence the
resulting fit thus confirming what was initially expected that upon simulating and fitting various
different distributions, the selection of initial values is vitally important as they can heavily
influence the fitted results and the final model.
It is also noteworthy, as in the case of the research carried out by Faddy (1998) to consider

some interesting features discovered for the fitted parameters in this paper. For instance, in many
cases during the fitting process, at least one of the parameter values was actually estimated to be
zero. In the case of the 4-phase fits, 643 out of the 1300 (nearly 50%) had one parameter value
equal to zero and 535 (41%) out of the remaining 657 fits had two parameters equal to 0. This
would strongly suggest over-fitting. Likewise, in the case of the 5-phase fits, 519 (nearly 40%) out
of the 1300 had one parameter value equal to zero, 600 (46%) out of the remaining 781 fits had
two parameters equal to 0, and 149 fits (11%) had three parameters equal to 0. Such results
indicate parameter redundancy in the models which agrees exactly with what Faddy (1998) has
previously reported.

Table 2

Average values and the confidence intervals for parameters (5-phase model)

Parameter Mean Confidence interval (a5 0.99)

m1 0.00140 (0.00086, 0.00194)

m2 0.02621 (0.01971, 0.03271)

m3 0.30781 (0.28833, 0.32730)

m4 0.18402 (0.16337, 0.20467)

m5 0.14310 (0.12088, 0.15974)

l1 0.36493 (0.34448, 0.38504)

l2 0.38575 (0.36385, 0.40764)

l3 0.31964 (0.29730, 0.34198)

l4 0.35212 (0.32826, 0.37598)
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Another interesting observation is the study of the eigenvalues, lj1mj, of the matrix Q (3)
(Faddy, 1994). In the case of the 4-phase fits, a total of 10 of the 1300 simulated fits present an
eigenvalue (lj1mj) equal to zero while a total of 99 of the 1300 simulated fits have two equal
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Fig. 5. The distributions of (a) m2 and (b) l4 for the 5-phase model.
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eigenvalues, where l21m2 5 l31m3 occurred 11 times out of the 99. Likewise, in the case of the
5-phase fits, 105 of the 1300 simulated fits show at least two equal eigenvalues where
l31m3 5 l41m4 occurred in five cases. Further examination of the 4-phase fits reveals that nine of
them have the estimated matrix Q (3) with l31m3 5m4, indicating that there is less redundancy of
the parameters than first highlighted. Also for the 5-phase fits, only five of them have l41m4 5m5.
Although this may imply a conflict with what was reported earlier in the paper, it is possible that
the reason for such results are due to there being parameter redundancy in the earlier phases and
not in fact in the final phase of the model.
All simulations were executed on an Intel Pentium 4 (3.2GHz) computer equipped with

1GB RAM. The mean computational time (standard deviation in brackets) is 97.6699 (39.2589) s
for the simulations of Coxian distribution with 4 phases and 94.4795 (27.8307) s for the
simulations of Coxian distribution with 5 phases. Figure 6 illustrates the computational times
for 600 simulations of fitting the Coxian phase-type distribution with four and five estimated
phases.
From inspection of the plot, it is possible to identify an outlier in the computational

times for the 5-phase distribution fits, its time being 4498.89 s. Although in general it seems
that the algorithm reaches the convergence sooner for fitting the 5-phase Coxian distri-
bution.
Figure 7 shows the distribution of the simulation time of computation; for the 5 phases

distributions, the outlier was removed to aid comparison of the two distributions.
As previously observed, the 5-phase distribution tends to be fitted faster than that of the

4-phase also suggesting that there was no over-fitting.
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Fig. 6. The computational times for simulations of 4- and 5-phase Coxian distributions.
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7. Conclusion and future work

This paper considers the Coxian phase-type distribution and how it may be fitted to a data set to
represent survival times, in particular the length of time a group of elderly patients spend in
hospital. In doing so, the paper investigated the fitting process of the parameter estimation, the
various techniques that have been used to perform this in the past and the potential problems that
may arise. On fitting the data, one problem that emerged is the inability to find a unique
representation for the data. In fact, it was possible for the estimation procedure to obtain
equivalent solutions.
This fitting process, along with the choice of initial parameters was further examined by

simulating 1300 samples of initial parameter estimates used for 4-phase and another 1300 samples
of initial parameter estimates for the 5-phase Coxian representations of patient survival. The
resulting fitted distributions and associated parameter estimates were considered for the
simulations for both 4-phase and 5-phase Coxian distributions. From inspection of the results,
it was apparent that the initial values heavily influence the fitted results and the final model.
One very encouraging aspect of the analysis was the performance of the SPQ method used in

the estimation process. Firstly, the execution of resolution performed much faster than other well-
known programs. In particular, the constrained minimization for a set of initial values spent on
average less time (at least 30% less) than a minimization done by the EMPht program (Asmussen
et al., 1996). Secondly SPQ performs appropriately if a parameter is estimated as zero. When the

200

150

100

50

0
0 50 100 150 200

Seconds

Distribution of simulation times: 4 phases

250 300 350

200

150

100

50

0

Distribution of simulation times: 5 phases

0 50 100 150 200
Seconds

250 300 350

Fig. 7. The distributions of computational times taken to fit the 4- and 5-phase simulated Coxian distributions.
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EMPht estimates a parameter as zero, it remarkably keeps this parameter as zero for all future
iterations. Additionally, the SPQ always converges. This is not the case with other algorithms such
as the Nelder-Mead simplex algorithm which faces the problem of not always converging to a
suitable distribution.
As in iterative estimation procedures, the methods described in this article have encountered

difficulties regarding the choice of the initial parameter values. The choice of such values
influences the final resulting fits. In fact, in some cases a considerable amount of variability was
apparent in the final parameter values. This drawback could possibly be overcome by using the
considerations regarding the eigenvalues of the matrix Q (3) (Faddy, 1994) to estimate the
parameters of the Coxian phase-type distribution, certainly an area worthy of further
investigation in future research.
Another aspect not considered in this paper is the further development of a general model

suitable for representing censored data in any survival analysis. Such an extension is the focus of
future work.
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